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L I S T O F F I G U R E S

Figure 1.1 A polar (blue arrow) SPP moves forward only, whereas apolar particle

(blue ellipse) moves towards its head or tail with equal probability. If a

collection of polar particles align parallel to each other, they altogether

move towards a director as indicated by the green arrow for the polar

arrangement. On the contrary, if the polar particles construct a mu-

tual anti-parallel arrangement, the flock does not have a macroscopic

velocity. Similarly a collection of apolar particles aligned parallel to

each other does not go anywhere macroscopically. For these apolar ar-

rangements its director (head-tail symmetric green arrow) represents

the direction of broken rotational symmetry. For both the polar and

the apolar arrangements, the translational symmetry is not broken.

5

Figure 1.2 Though active nematic dose not have any macroscopic velocity, splay

or bend arrangement of the apolar particles introduces local polarity

as indicated by the arrows. This local polarity induces local particle

current proportional to the local curvature of the configuration. 19

Figure 2.1 (a) Two dimensional square lattice with occupied (n = 1) or unoccu-

pied (n = 0) sites. Filled circles indicate the occupied sites. Inclinations

of the rods towards the horizontal direction show respective particle

orientations θ ∈ [0, π]. (b) Equilibrium move: particle can move to any

of the four neighbouring sites with equal probability 1/4. (c, d) Active

move: particle can move to either of its two neighbouring sites with

probability 1/2, if unoccupied, in the direction it is more inclined to,

i. e., along BD in (c), and AC in (d). 31
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Figure 2.2 Phase diagram for both the equilibrium and the active nematic in the

density versus inverse temperature plane. The equilibrium system re-

mains in the isotropic (EI) state in the low density regime (on the left

of the solid line) and in the nematic (EN) state in the high density

regime (on the right of the solid line). The active nematic goes from

the disordered isotropic (I) state to the locally ordered inhomogeneous

mixed (IM) state with increasing density or decreasing temperature.

The I - IM transition occurs with the appearance of clear bands (BS)

in the low temperature regime. In the high density regime the active

nematic shows bistability between the IM and the homogeneous glob-

ally ordered (HO) state. 34

Figure 2.3 Scalar order parameter versus packing density plot for 400 × 400 sys-

tem size at βε = 2.0. The equilibrium system (E, solid line) shows

continuous isotropic to nematic state transition with increasing den-

sity. The active system goes from the isotropic (I) state to the locally or-

dered inhomogeneous mixed (IM, ×) state. In the high density regime

the system shows bistability between the IM state and the homoge-

neous globally ordered (HO, •) state. 34

Figure 2.4 Left panel shows snapshot of the particle inclination towards the hori-

zontal direction. Colour bar ranging from zero to one indicates vertical

to horizontal orientation, respectively. BS is the banded state config-

uration shown for (βε, C) = (2.0, 0.38). IM, HO and EN state config-

urations are shown for (βε, C) = (2.0, 0.78). Right panel shows the

coarse-grained density in the respective states. 35

Figure 2.5 Density fluctuation ∆N =
√
< N2 > − < N >2. All the active ordered

states show large density fluctuation obeying the relation ∆N ∼ 〈N〉ζ

with ζ > 1/2. The active disordered isotropic state shows normal

density fluctuation with ζ = 1/2. 37
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Figure 2.6 The I to IM transition at low temperature occurs with a jump in S

where the particles form bands (BS). Distribution of the scalar order

parameter near the I - BS transition at (βε, C) = (2.0, 0.37) shows two

peaks. 37

Figure 2.7 (a) Finite size scaling of S for both the HO and the IM state at (βε, C) =

(2.0, 0.76). (b) Order parameter time series show that the active sys-

tem flips between the HO and the IM state in the bistable regime. Two

time series are shown for two different parameter values in the high

density regime. 39

Figure 2.8 Two-point orientation correlation shown for βε = 2.0 on log-log scale.

(a) Active model: g2(r) decays exponentially at low density (©, �)

and algebraically at high density (�, 4). In the bistable regime at high

density (4), g2(r) decays algebraically in the HO state and abruptly in

the IM state. (b) Equilibrium model: g2(r) decays exponentially at low

density (©, �) and algebraically at high density (�, +,4). Continuous

lines are the respective fits, fitted for more than one decade. 40

Figure 2.9 Steady-state characteristics of high density states. (a) Orientation dis-

tribution P(θ) of particles calculated from one snapshot in the steady-

state. P(θ) fits with Gaussian distribution (continuous lines) for both

the HO and the EN states. The IM state shows broad distribution of

θ. (b) Distribution of the mean orientation P(θ̄) calculated from θ̄ of

each snapshot in the steady-state. P(θ̄) is broad for the EN state in

comparison to the HO state. 41

Figure 2.10 Steady-state characteristics of high density states. Steady-state auto-

correlation Cθ̄(t) of the mean orientation of the system. All plots are

shown for (βε, C) = (2.0, 0.80). 42
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Figure 2.A.1 Order-disorder transition in the equilibrium model. Main – scalar or-

der parameter S versus inverse temperature βε plot for different den-

sity C. With increasing βε the system goes from the isotropic (small

S) to the nematic (large S) state. The critical temperature for C = 1

matches with the corresponding value for the equilibrium XY model

[108]. Inset – the critical inverse temperature decreases with increas-

ing density. Similar phenomenon was earlier observed for diluted XY

model [108]. 48

Figure 3.1 Heat map of (left panel) the orientation θ(r, t) = tan−1
(

py(r,t)
px(r,t)

)
, and

(right panel) the density, shown for the clean system (∆ = 0). Starting

with random orientation and uniform density at t = 0, the system

coarsens with time. Respective times are indicated on the left margin.

57

Figure 3.2 (a) Two-point correlation function versus distance plot for the polar-

isation field in the clean system (∆ = 0) at different times. (b) Two-

point correlation function versus scaled distance plot. Cp shows good

collapse. 59

Figure 3.3 (a) Two-point correlation function versus distance plot for the density

field in the clean system (∆ = 0) at different times. (b) Two-point

correlation function versus scaled distance plot. Cρ does not show

good scaling; therefore, dynamic scaling is absent for the density field.

60

Figure 3.4 (a) Growth law of the hydrodynamic variables in the clean (∆ = 0)

system. The self-propelled speed vs = 0.5 for the random field active

model (RFAM), whereas vs = 0 for the zero-SPP model (zero-SPPM).

The straight lines are drawn for the respectively indicated power-laws.

(b) Plot of effective growth exponent of the hydrodynamic fields ver-

sus time in the clean system for the RFAM. 61
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Figure 3.5 Heat map of (left panel) the orientation θ(r, t) = tan−1
(

py(r,t)
px(r,t)

)
, and

(right panel) the density, shown for fixed time t = 1000 and different

disorder strengths ∆ indicated on the left margin. Size of the ordered

domains reduces with increasing strength of disorder. 62

Figure 3.6 (a) Two-point correlation function for the polarisation, drawn for dif-

ferent disorder strengths at t = 1000. (b) shows scaling collapse of Cp

as a function of r/Lp. Morphology of the polarisation field is approx-

imately independent of disorder. 63

Figure 3.7 Growth law of the field variables - (a) the polarisation and (b) the

density in the RFAM, drawn for different disorder strengths. In the

disordered environments, the growth deviates from the power-law at

late times. 64

Figure 3.8 (a) Time variation of the effective growth exponent of the polarisation

field in the RFAM, shown for different disorder strengths. (b) The

scaling collapse of zeff(P) − z̄p versus Lp/λp. The best fit zeff(P) − z̄p '
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lines show the respective algebraic fits. 73

Figure 4.2 Steady-state snapshots are shown for η = 0.10, L = 150. (a - d) are
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1
I N T R O D U C T I O N

Various aerial displays exhibited collectively by a flock of birds often fascinate us. Similar

collective behaviours are observed in shoal of fishes or animal herds of length spanning

a few kilometers. On the other hand, micro-organisms like bacteria, motor proteins with

associated biofilaments, cytoskeleton of living cells, melanocytes in our skin, etc. display

analogous collective phenomena in micron scales. Despite the difference in their sizes and

biological origins, emergence of such coordinated movement or pattern formation, even in

absence of any external drive, seem to be common in all these systems. This ubiquity in their

behaviours is a consequence of the similarity in the symmetry and the conservation laws of

these systems. These similarities further allow us to treat all these systems on equal footing.

Active matter, a rapidly growing sub-field of the condensed matter physics, provides such

a unified framework to study all these systems, and the constituents of an active system are

called self-propelled particles (SPPs) [1–7]. This sub-field mainly focuses on various mechanical

and statistical properties emerging in a collection of SPPs, and specific biological details are

not important here. There are also abundant varieties of artificially designed systems, e. g.,

active colloids [8–10], active polar disks [11], vibrated granular media [12–15], chemically

boosted wire-cuts [16] that facilitate experimental studies of the active matter.

1.1 active systems are out-of-equilibrium

The active systems are out-of-equilibrium, and their properties are governed by underlying

symmetries and conservation laws. Before going into the details of these systems, let us reca-
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pitulate the fundamental theories for well-understood equilibrium systems. Let us consider

an isolated system separated from its surroundings by an adiabatic wall, so that there is

no exchange of matter or energy between the system and its surrounding. The complete

description of that system is given by the associated conserved quantities, viz., number of

constituting particles, total volume and total energy. These quantities are extensive thermody-

namic variables as their values depend on the mass of the system. Any number of replicas of

the system can be generated by considering other isolated systems of the identical chemical

compositions with the same values of the thermodynamic variables. After a sufficiently long

time of the system preparation, the replicas statistically exhibit identical macroscopic prop-

erties, which do not evolve with time, and the systems are in their equilibrium states for the

given thermodynamic variables. The equilibrium state can also be determined by another

thermodynamic variable, namely entropy S. From the concept of the thermodynamics [17]

and the statistical mechanics [18, 19], we know that the thermodynamic equilibrium state of

a system is a macrostate with the largest possible number of microstates, i. e., the highest

entropy.

Now let us focus on a single isolated system and consider it as a collection of two sub-

systems separated by a fictitious boundary. The nature of the boundary controls the mutual

exchange of energy, volume or particles, although these variables are conserved in the whole

isolated system. The condition for the thermodynamic equilibrium in these two subsystems

is governed by the principle of maximum entropy, which essentially boils down to the equal-

ities of the respective conjugate variables, viz., temperature, pressure and chemical potential.

These conjugate thermodynamic variables do not depend on the mass of the system, and

therefore, these are intensive quantities. In general for any arbitrary system, the thermody-

namic variables are related to its entropy by an identity

dS = −∑
i

XidYi, (1.1)

where Yi’s are the relevant extensive variables, and Xi’s are the respective conjugate variables,

intensive in nature.

Let us now redefine one of the above subsystems as a new system and the other one as the

surrounding. Moreover, we assume the new system to be separated from the surrounding
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by a diathermic boundary, so that only exchange of energy is permitted. The new system

is macroscopic in size, but much smaller than the surrounding such that any exchange of

energy would leave the surrounding unaltered. Hence, the system is said to be in thermal

contact with a bath that maintains a fixed temperature. It is then instructive to define the

thermodynamic potentials, i. e., free energies [17–19] whose minimisation leads the system

to the thermodynamic equilibrium. The global minimum of the free energy surface dictates

the equilibrium state for the given parameters, and with the change in a typical parame-

ter, the system goes from one state to another, i. e., phase transition takes place [17, 20].

The free energy changes continuously with the parameter, but its higher order derivative

shows discontinuity at the transition point. We call the transition to be first order if the first

derivative shows discontinuity, whereas it is a continuous transition if the second or higher

order derivative is discontinuous. Generally, first order transition occurs through nucleation

in the system, whereas in the continuous transition, system have large fluctuation, which is

manifested by divergence in susceptibility [17, 20].

In the equilibrium state the macroscopic properties statistically remain unchanged with

time, i. e., a steady-state prevails. However, the word ‘equilibrium’ conveys a much more

rigorous sense. For example, let us consider a Brownian system – a pollen is dispersed

in water kept in a beaker in contact with a constant-temperature bath. Since the pollen

is dispersed in a viscous media, naively one would expect its motion to be ceased after

sufficiently long time. On the contrary, the particle shows persistent motion because of the

random forces experienced from relatively smaller water molecules. Here, the fluctuations

in the system balances expected dissipation, and a fluctuation-dissipation relation (FDR) [21]

exists in the system. Also, the equilibrium criterion of the system demands time-reversal

invariance, which invokes the principle of detailed balance [21, 22].

Now let us discuss about the active matter. Each bird within a flock flies forward at the

cost of its internal energy acquired through nutrition. Therefore, there is constant injection

of energy that is transduced to mechanical energy manifesting into a systematic motion.

This phenomenon is a defining characteristic of the active matter. As compared to the ear-

lier discussed Brownian motion, here the dissipation of energy is not correlated with the

input – there is an incessant input of energy that drives the active system out-of-equilibrium.
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There are some studies of the active matter [23–28] that amount to define an ‘effective tem-

perature’ in certain limit of the associated parameters, where the system obeys detailed

balance, and an effective FDR can be found. Still the active matters are generally regarded as

out-of-equilibrium systems. However, active systems are different from other kinds of out-of-

equilibrium systems like a bulk fluid sheared from the top or driven diffusive systems [21];

in active systems, energy is injected at the individual particle level.

The out-of-equilibrium feature of the active systems restrict us from defining an equilib-

rium state for it, but a non-equilibrium steady-state (NESS) can be defined similar to other

out-of-equilibrium systems [21]. When a large population of birds sit for roosting, there is

no flock – their arrangement seems to be random. On the contrary, all of the birds move

in a globally agreed direction while flying, i. e., flock appears. We can regard this flocked

arrangement as a steady-state since there is a steady mass current. Therefore, there is a non-

equilibrium order-disorder transition in active systems where the rotational symmetry gets

broken. The steady mass current in the active systems could naively be compared with the

flow of a viscous fluid, usually described by the Navier-Stokes equations [20], but there is a

significant difference between these two types of systems. The active systems are not Galilean

invariant, since adding a constant velocity to all the birds changes the phenomenology of the

flock [29].

1.2 categories of active matter

1.2.1 Polar and apolar

Self-propelled particles in general possess some intrinsic axes along which they manifest

their mechanical activity. For example, an individual bird flies forward along its long axis,

whereas melanocyte cell can move forward or backward with equal probability. Therefore,

bird-like SPPs possess some polarity along their intrinsic axis, whereas melanocyte-like enti-

ties possess a head-tail symmetry. We call the first type a polar particle and the latter one an

apolar particle.
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Polar arrangement 

Apolar particle 

Apolar arrangement 

Polar particle 

Figure 1.1: A polar (blue arrow) SPP moves forward only, whereas apolar particle (blue ellipse) moves
towards its head or tail with equal probability. If a collection of polar particles align paral-
lel to each other, they altogether move towards a director as indicated by the green arrow
for the polar arrangement. On the contrary, if the polar particles construct a mutual anti-
parallel arrangement, the flock does not have a macroscopic velocity. Similarly a collection
of apolar particles aligned parallel to each other does not go anywhere macroscopically.
For these apolar arrangements its director (head-tail symmetric green arrow) represents
the direction of broken rotational symmetry. For both the polar and the apolar arrange-
ments, the translational symmetry is not broken.

Dynamics of a collection of SPPs depend on the nature of inter-particle interactions. If all

the particles in a population of polar SPPs on average tries to align in parallel, we can assign

a unit vector, called director, for the collection towards which the flock moves. Here the polar

particles are said to form a polar flock. On contrary, if the inter-particle interaction allows both

parallel and anti-parallel alignment of the polar particles, there could be a situation when

the collection macroscopically goes nowhere. Here the director n̂ represents the direction of

broken rotational symmetry of the population and possesses n̂ = −n̂ symmetry. Hence, we

call the system to be in an apolar or nematic state. The nematic state could also be emerged in

a collection of apolar particles for parallel alignment interactions. Different states appearing

for polar and apolar SPPs are represented in the schematic Fig. 1.1.

1.2.2 Dry and wet

In a collection of SPPs moving in a background fluid, each particle loses momentum to

the fluid because of the viscous drag offered to it. Although the total momentum of the

particles and the fluid remains constant, the momentum is not conserved if only the particles
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are considered. Depending on this criterion of momentum conservation, we can categorise

active systems as (i) wet system – total momentum remains conserved and (ii) dry system –

total momentum is not conserved. If η represents viscosity of the fluid medium, and γ be the

frictional drag experienced by the particles, then in general the effect of the fluid medium

on the particle dynamics could safely be neglected beyond a length scale
√

η/γ. Typically

this length scale is very short ranging over only few neighbouring particles. In the studies of

the active matter, often we shall focus on the SPPs only. Consequently, the total momentum

of the system would not be conserved, and we shall address those as dry active system.

However, if the phenomenology demands both the particles and the fluid to be considered

as the system, we shall call those as wet active matter. There are indeed many natural systems

that are intrinsically wet [1–7], but our focus in this thesis is the dry active system only.

1.3 methodology

What could be the framework to study active systems? The active systems, mostly inher-

ited from biological origins, are extremely complex in nature. Mechanical manifestation of

the real SPPs are often governed by a large number of other agents, internal or external,

the response to which is not always straight forward, rather a bit puzzling. One could cer-

tainly use the available techniques for studying other types of out-of-equilibrium systems;

however, those techniques are yet to achieve simplicity and versatility of their equilibrium

counterparts. Thankfully scientists have managed to prescribe frameworks often borrowed

from equilibrium counterparts that could be applicable to the active systems in some limits.

Here we shall mention some of the frameworks often used in studies of the active matter.

1.3.1 Agent-based simulation

A commonly used technique to study the active systems is to consider a collection of pseudo-

particles, and simulate those using computers. In simulations, the dynamics are usually

adopted looking at the phenomenology of the concerned active system, and thereafter some

approximated interactions are employed depending on the aspects we are interested in. For
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example, in the polar systems the interaction should be ‘ferromagnetic’ in nature, whereas

for the apolar systems both parallel and anti-parallel interactions are allowed. The volume

exclusions are incorporated in system dynamics [30] if we wish the steric interaction to

be taken into account. Otherwise, simulations with point particles would suffice for our

aim. Other than the exact interactions, ‘errors’ are accounted by relevant noise terms [31,

32]; therefore, stochasticity comes into play. Scientists often adopt Monte-Carlo algorithms

[33–35] to deal with stochasticity. Although questions might be raised how an algorithm

developed strictly for equilibrium systems could be employed here, in general the coupling

of Monte-Carlo algorithm with particle dynamics is such that the detailed balance is violated

[33–35].

1.3.2 Hydrodynamics

The phenomenology of the active systems could also be described by means of a contin-

uum theory – hydrodynamics [1, 7, 29, 36–38]. For that, one needs to identify the relevant

slow variables first. Those slow variables could be obtained from the associated agent-based

microscopic models through proper coarse-graining. The next step is to write the time evo-

lution equations for those slow variables where all the terms should be incorporated that

are not restricted by the inherent symmetry of the system. Analogous to the prescription for

equilibrium systems, the effect of other fast variables are summarised in noise terms. How-

ever, here we need not to worry about FDR and detailed balance. Although these equations

of motion are usually written following the phenomenology, those could also be derived

from the microscopic models. In general, the evolution dynamics of the associated slow vari-

ables are expressed by coupled non-linear stochastic partial differential equations (SPDEs),

where the coefficients of different terms depend on the parameters of the corresponding mi-

croscopic model. Once we succeed in formulating those equations, we can gain information

following linearised treatment [29] or other theoretical frameworks like refined mean-field

[34, 35] or dynamic renormalisation group approach [29]. One can also simulate those SPDEs

numerically [39].
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1.3.3 Experiments

As compared to other disciplines of science, in the evolution of the active matter literature,

experiment follows theory. One of the major reasons for this could be complexity in working

with biologically originated constituents. Although, there are experimental studies for active

matter [40–44] with biological ingredients, most of the studies are for artificial imitations

[9, 11–15]. Since the theoretical framework for the active systems are yet to attain a generic

feature, their results should be compared with the experiments in a qualitative sense. Next,

we shall briefly discuss about the characteristics of different types of active systems, mostly

in two spatial dimensions unless specified, that have been unveiled so far.

1.4 polar system

1.4.1 Vicsek Model

The first significant model for a two-dimensional flock of ‘birds’ is given by Vicsek and

his collaborators [31]. They model individual bird as point particle that tries to move in the

average direction of all the neighbouring particles within a range of ‘influence’. Although this

seems like a ferromagnetic spin model [20], here the spins are itinerant in nature. Moreover,

while trying to move in the determined average direction, the bird makes some error. The

update rules governing the position rj(t) and the direction of motion (orientation) θj(t) of

the jth particle at time t are as following:

rj(t + 1) = rj(t) + vj(t), (1.2)

θj(t + 1) = arg

[
∑

k∈Rs

exp(iθk(t))

]
+ ηψj, (1.3)

where each particle moves with velocity v(t) = v(cos θ(t), sin θ(t)) of a constant speed v.

Each particle interacts with its neighbours within a circle of radius Rs around it. Error in

movement is incorporated by an additive noise term ψ chosen from a uniform distribution

in [−π, π]. The authors show that for sufficiently high density of particles, the model shows
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order-disorder transition with increasing noise strength η. For low η values, all the birds

move homogeneously in the same direction on average. For moderately high η values, some

dense clustered bands appear in the system, while rest of the system remains disordered

(note that no bands were reported in Ref. [31]). On further increment of noise, the birds

show no coherent motion. Similar order-disorder transition is also noted with the variation

in particle density [31]. Vicsek et al. also argue that this order-disorder transition is contin-

uous in nature, and calculate critical exponents for the model in analogy with the standard

techniques for the equilibrium systems.

1.4.2 Noise: angular and vectorial

The claim of continuous order-disorder transition in the collection of SPPs is refuted by Chaté

and collaborators [32, 45, 46] using a modified VM. Although the position update equation

is retained unchanged, the ‘angular noise’ in Eq. (1.3) is replaced by the ‘vectorial noise’ as

following:

θj(t + 1) = arg

[
∑

k∈Rs

exp(iθk(t)) + ηnj(t) exp
(
iψj(t)

)]
, (1.4)

where nj(t) is the number of neighbours of the jth particle within its interaction range Rs at

time t. Compared to the angular noise in the VM, this choice of vectorial noise implies that

the birds make error while determining the orientations of their neighbours. Using this mod-

ified model, they show that the order-disorder transition in polar SPPs takes place through

coexisting states, where high density waves propagates steadily in a disordered background.

In analogy of the liquid-gas phase transition through nucleation mechanism, they argue in

favour of the first order transition. Moreover, they show that the simple modification in the

update rule from Eq. (1.3) to Eq. (1.4) has nothing to do with the nature of transition. Indeed

the original VM also exhibits first order transition, provided one considers large enough

system size, because the finite size effect is much more dominant for angular noise [31] as

compared to the vectorial choice [32]. Although, claims are made that the emergence of an

artificial symmetry breaking [47] or way of noise incorporation in the model [48] control the

9



nature of the transition, now it is more or less settled that this transition is first-order [32, 45,

46] in nature.

1.4.3 Hydrodynamics

For a hydrodynamic description, all we need is to recognise the relevant slow variables and

contain the effect of other fast variables in noise terms with appropriate distributions, as

mentioned in Sec. 1.3.2. In the dry active systems, the SPPs move on a substrate that hinders

particles’ motion through frictional forces. Therefore, the only conserved quantity for this

system is the number density ρ(r, t) of the SPPs, as we do not allow the ‘birds’ to reproduce

or die during flight. This field variable could be obtained from the respective microscopic

model through proper coarse-graining within a radius Rcg as following:

ρ(r, t) = ∑
j∈Rcg

δ
(
r− rj(t)

)
. (1.5)

The polar orientation of the system could be presented by a polarisation vector field as

p(r, t) =
1

ρ(r, t) ∑
j∈Rcg

n̂j(t)δ
(
r− rj(t)

)
, (1.6)

where n̂(t) represents instantaneous orientation of the SPPs. This is a broken symmetry

parameter representing orientational order in the system and is not a conserved quantity.

Considering the conservation laws and the symmetries of the polar SPPs as in the VM, hy-

drodynamical equations of motions (EOMs) for the above mentioned slow variables have

first been written by Toner and Tu [29, 49]. Later, those EOMs have been derived with the

expressions for the associated coefficients using Boltzmann-equation approach [38, 50, 51].

However, the forms of these coefficients are model specific, and in general depend on the

model parameters, viz., density, velocity etc. Here we try to obtain the EOMs following the

phenomenology, but in a manner that could be easily compared with its equilibrium coun-
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terpart. Therefore, we write the EOMs as if the terms arise from a free energy functional Fp,

and add the terms responsible for the out-of-equilibrium aspects separately, as following:

∂tρ + vs∇ · (ρp) = −∇ ·
(
− 1

γρ
∇

δFp

δρ
+ fρ

)
, (1.7)

∂t p + λ1(p.∇)p = − 1
γp

δFp

δp
+ fp, (1.8)

where vs represents speed of the SPPs, γρ and γp represent kinetic coefficients. The right-

hand-side (RHS) of Eq. (1.7) contains two terms – while the first term could be understood

as a diffusive current, the second term represents associated noise. To be consistent with

the EOMs introduced by Toner and Tu [29, 49], we shall drop both these terms, which is

a reasonably good assumption for most of the active systems [1]. As mentioned in Sec. 1.1,

the polarisation Eq. (1.8) could be compared with the celebrated Navier-Stokes equation

[20]. The coefficient λ1 has dimensions of speed, and the associated term represents non-

linear advection in the system. However, break-down of the Galilean invariance for the SPPs

imposes condition vs 6= λ1. This inequality allows the fluctuations in the density and the

polarisation fields to convect at different speeds. The noise term fp appearing in Eq. (1.8) is

generally assumed to be additive, white, and Gaussian with zero mean and delta-correlation

〈 fp,i(r, t) fp,j(r′, t′)〉 = ∆δijδ(r− r′)δ(t− t′), (1.9)

where ∆ is a constant, and dummy indices i, j represent Cartesian components.

As compared to the Navier-Stokes equation for simple fluid, the polarisation field defined

for the active systems possesses a dual nature. While the polarisation represents a broken-

symmetry parameter of the system, vs p signifies particle velocity field. This duality of the

polarisation field essentially leads many distinction in large scale behaviour of this out-of-

equilibrium system, as we shall see later. The Free energy functional for dry polar SPPs could

be written as [1, 3]

Fp =
∫

ddr

{
−α1(ρ)

2
p2 +

α2

4
p4 +

K
2
∇p∇p +

w
2

p2∇ · p− w1∇ · p
δρ

ρ̄
+

A
2

(
δρ

ρ̄

)2
}

, (1.10)
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where δρ = ρ− ρ̄ represents fluctuation in the density field from its average value ρ̄. The α1

and α2 terms dictate mean-field order-disorder transition in the system as α1 changes its sign.

In general for metric interaction models like VM, one can assume α1(ρ) =
(

ρ
ρc
− 1
)

, so that

α1 changes its sign at a critical ρ = ρc. Here we have assumed a one-elastic constant approxi-

mation; therefore, the energy cost for a spatially inhomogeneous deformation is represented

by the K term, where the Frank constant K is positive. The terms with w’s in Eq. (1.10) are

allowed in equilibrium systems also. They represent the density and p2 contributions to the

spontaneous splay [20]. The last term in Eq. (1.10) takes care of the incompressibility of the

system. Substituting this expression for Fp into Eq. (1.8), and using the notations v1 = w1/γp

and λ = w/γp, we obtain the EOM for the polarisation field as

∂t p + λ1(p.∇)p = (α1 − α2 p2)p + K∇2 p− v1∇
ρ

ρ̄
+

λ

2
∇p2 − λp(∇ · p) + f . (1.11)

The gradient of the density term on the RHS of Eq. (1.11) gives gradient of pressure, which

appears because of the density fluctuation in the system. This EOM for the polarisation

field is similar to the EOM phenomenologically advocated by Toner and Tu [29, 49] with

λ2 = λ and λ3 = −λ/2. Although it seems that λ1,2,3 are mutually related, the exact relation

depends on the specific microscopic model. Here, we have considered single elastic constant

for the system; however, there could be two more elastic (viscosity) terms appearing in the

equation, if we consider explicit contribution from splay and bend deformations [20, 29, 49],

as depicted for the apolar system in schematic Fig. 1.2.

The homogeneous steady-state solution of Eq. (1.11) shows that the system remains in a

disordered state for α1 < 0 corresponding to the mean density ρ̄ < ρc. On the other hand,

for ρ̄ > ρc, i. e., α1 > 0 the system gets ordered with an average polarisation p̄ =
√

α1(ρ̄)/α2.

Deep in the ordered state, a linearised study of the EOMs suggests that there exists two

decoupled modes of propagation with different speeds [2, 29]. This difference in speed of the

sound modes emerges because of the lack of Galilean invariance in SPPs. As compared to the

normal fluids where propagation of sound waves are dictated by momentum conservation,

the sound modes in the SPPs indicate spontaneously broken symmetry of the system. If we

approach the mean-field transition from the ordered state, near the transition the system
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turns linearly unstable, and therefore, solitary waves propagates in the form of bands [32,

39, 46, 51].

In the active systems, the density field is coupled with the polarisation by means of their

EOMs. This coupling introduces anomalous number fluctuation [1, 3] in these systems, as

compared to their equilibrium counterparts. For a given system, its number fluctuation is

related to its static structure factor S(q) through the relation

lim
q→0

S(q) =
(∆N)2

〈N〉 , (1.12)

where q represents wave vector, N is the instantaneous number of particles in a region of size

V, 〈N〉 is its average over time, and ∆N =
√
〈N2〉 − 〈N〉2 represents the standard deviation.

A linearised study of the EOMs for the polar SPPs would give us the static structure factor

as

S(q) =
1

ρ̄V
〈δρq(t)δρ−q(t)〉

= A(θ) 1
q2 , (1.13)

where only the first order significant terms have been retained in the calculation. The coef-

ficient A depends on the system parameters as well as the angle between flocking direction

and q [1, 3, 29]. For θ = 0, A(θ) = 0, and therefore higher order corrections are necessary

there. Otherwise, this 1/q2 divergence seems to be quite omnipresent for active systems [1, 3,

29, 49], and does not even depend on the dimensionality d of the system; though A depends

on d. The shortest wave vector in an active system could fairly be assumed of the order of the

inverse of system size V−1/d, and therefore of the order 〈N〉−1/d. Then Eq. (1.13) suggests

limq→0 S(q) ∼ 〈N〉2/d for the active systems. Combining this expression with Eq. (1.12), we

obtain

∆N ∼ 〈N〉 1
2+

1
d , (1.14)
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i. e., there exists giant number fluctuation (GNF) in the active systems. Although, we have

introduced the concept of GNF for the polar SPPs, it is a common characteristic of both

polar and apolar active systems, and it was first predicted for the apolar system [36, 52].

The expression for the static structure factor for polar SPPs as in Eq. (1.13) is analogous

to that for the XY model [20]. Therefore, one may naively expect existence of quasi-long

range order in the polar SPPs. However, for two-dimensional polar SPPs, effect of the ne-

glected non-linearities are quite relevant. Those non-linearities suppress the fluctuation in

the system, so that, for q → 0, divergence of S(q) is slower than 1/q2. This establishes true

long range order (LRO) in the polar SPPs. Note that we are discussing about the presence

of LRO in a two-dimensional system that may sound like violation of the Mermin-Wagner

theorem [53]. However, the SPPs construct out-of-equilibrium system where this theorem is

not satisfied. In fact, the polar SPPs themselves carry information from one subflock to the

other, which is faster as compared to the diffusive transport of informations [29] in usual

equilibrium systems in two dimensions. This convective nature of the particles induces true

LRO in these systems.

1.4.4 Active Ising model

Apart from the systematic studies of the polar SPPs through simulations of Vicsek-like mod-

els or the hydrodynamic analysis of the respective coarse-grained EOMs [29, 31, 32, 38, 46,

49–51], another interesting approach to understand flocking phenomena minimally has been

introduced by Solon and Tailleur [34, 35]. In analogy of the Ising model for equilibrium sys-

tems [20], they introduce an out-of-equilibrium version of the same model, namely Active

Ising Model (AIM). In the AIM, both the self-propulsion characteristics and the alignment

interactions of the SPPs have been taken care of. However, as compared to the continuous

rotational symmetry of the SPPs in Vicsek-like models, here the particles possess discrete

rotational symmetry – each particle possesses ‘spin’ +1 or −1. They consider a square lat-

tice, and the Active Ising Spins (AISs) can sit on its vertices. There is no volume exclusion

interaction; therefore, any number of AISs can sit on a single site. The AISs move to their

right and left sites with different probabilities depending on their spins. In the vertical direc-
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tion, they perform diffusive movement. Each AIS tries to get aligned with all other AISs on

the same site. The dynamics of the system is controlled by the density of the particles and

the ambience temperature (comparable to the noise term in the VM). For this model and

an associated refined mean-field model (RMFM), they argue that the flocking phenomena

could also be understood as gas-liquid transition – (i) at high temperature and low density,

the system does not form flock, which could be compared with a gaseous state; (ii) for low

temperature and high density, the AISs align and flow like a liquid; (iii) in between this two

regimes, bands travel with disordered background.

1.4.5 Experiments

Here we briefly discuss some of the interesting experimental studies for the polar SPPs. As

already mentioned in Sec. 1.3.3, the results of these experiments should be compared with

the theoretical predictions only qualitatively.

Schaller et al. perform an in vitro experiment [54] with actin filaments propelled by one

type of motor protein, namely heavy meromyosin. They keep the motor proteins attached

to the substrate that drive the thread-like filaments through treadmilling mechanism. Some

of the filaments are fluorescently labelled to visualise their alignment. They show that be-

low a certain density of the filaments, individual filaments perform persistent random walk.

Therefore, the system remains in a disordered state analogous to the disordered state ob-

served in the Vicsek model. However, if the density of the filaments is higher than its critical

value, then these threads show coherent motion. For further increment in density, wave-like

structures appear in the system. Through another following experiment [55] they argue the

importance of long ranged interactions on the stability of the patterns appearing in the sys-

tem.

A similar experiment was preceded by Szabó et al. [56] where they look for order-disorder

transition in a collection of keratocytes (tissue cells) extracted from fish scales. For initial

collection of the cells with low density, random motility is observed. However, with the

cell division in the course of time, i. e., increase in density over a threshold value, the cells

exhibit cooperative movement. Motivated by this experiment, they introduce a numerical
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model which advocates for continuous order-disorder transition in the system. Although

such a conclusion could not be drawn from the poor data quality of this experiment, we

must realise the qualitative agreement of their results with the earlier described theoretical

prescriptions.

While experiments with biological constituents seem to be complicated because of re-

quired controlling protocols, experimentalists often find it easy to work with artificially

designed SPPs [11, 14–16, 57–59]. Paxton et al. [16] devised polar SPPs using rod-shaped

micron-sized gold-platinum wire-cuts, which propels toward the platinum end because of

the emerged chemical imbalances on aqueous hydrogen peroxide solution. A more cele-

brated technique of devising polar SPPs is by assigning anisotropy either in shape or in

mass distribution of small rods. Kudrolli et al. considered a collection of cylindrical entities

having mass anisotropy [58], and placed those on a plane substrate that has been vibrated

vertically with certain frequency and a driving acceleration. Here the driving acceleration

of the shaker is analogous to the ambience noise introduced in the Vicsek-like models [31,

32]. Above a threshold driving acceleration, each rod moves towards its lighter end since the

heavier end encounters more frictional force from the substrate. With the increment of driv-

ing acceleration, the rods tend to accumulate near the boundary of the substrate. However,

with further increase in the acceleration, the accumulation turns less pronounced because of

higher noise. They argue that the cylindrical shape of the entities is the reason behind the

accumulation near the boundary, since spherical particles do not exhibit similar tendency.

They also characterise presence of large number fluctuation in the system. To avoid accumu-

lation tendency of polar SPPs near the wall, petal geometry has been incorporated in later

experiments [11, 15, 59]. In Ref. [11], Deseigne et al. consider a collection of circular disks with

anisotropic base. While the circular geometry suppresses nematic alignment, in-built polarity

induces directed motion on the vibrated substrate. With this experimental setup, they show

onset of collective motion with varying vibration amplitude. They also report large number

fluctuation with scaling constants qualitatively in agreement with theoretical prescriptions.

Following this they perform another experiment and introduce a numerical model for the

vibrated polar disks [59], from which they confirm the existence of true long range order in

two-dimensional polar SPPs. In an ingenious experiment [15], Kumar et al. show that coher-
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ent motility could be achieved by a collection of vibrated granular rods, provided those rods

interact through passive spherical beads, and the motility could be increased with increasing

density of passive beads. This experiment provides a new mechanism for carrying cellular

cargo particles. As compared to the electrically energised spherical polar SPPs in Ref. [9], the

motility of the polar rods in Ref. [15] could be controlled by tuning the concentration of the

‘compressible fluid’ of passive beads in the background.

1.5 apolar system

The choice of the broken symmetry parameter for the apolar (nematic) systems is little more

subtle as compared to the polar systems. A system with nematic order must be invariant

under the inverse transformation of the director, i. e., n̂→ −n̂. Therefore any vector quantity,

like polarisation in the polar case, would not be eligible for the choice; rather a second rank

tensor would serve the purpose. Moreover, that tensor should be symmetric and traceless

since it must yield zero in the isotropic disordered state. In general for two dimensional

nematic systems, the tensor order parameter [20, 60] is defined as

Q(r, t) =
S
2

 cos 2θ(r, t) sin 2θ(r, t)

sin 2θ(r, t) − cos 2θ(r, t)

 , (1.15)

where θ represents orientation of the coarse-grained director n̂(r, t) = (cos θ(r, t), sin θ(r, t)).

Here we have restricted ourselves to the discussion of uniaxial nematics only. Ordering of

such systems is generally quantified by the positive eigenvalue S of Q, while the associated

eigenvector represents orientation of the global director.

1.5.1 Microscopic model

Following the Vicsek model for the polar SPPs, Chaté et al. introduce a similar model for

active nematics [61]. They consider a collection of point particles, where any arbitrary particle

j possesses an intrinsic orientation θj(t) ∈ [−π/2, π/2], so that θj ≡ −θj. At every time step,
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the particle travels a fixed distance either along θj or θj + π with equal probability. At every

time step θj is updated to the orientation of the eigenvector Θj(t) corresponding to the

positive eigenvalue of the local tensor order parameter Qj(t). Qj(t) is calculated from the

orientations of all neighbouring particles k within a fixed interaction range Rs of the jth

particle. However, ambience noise perturbs the expected update:

θj(t + 1) = Θk∈Rs(t) + ηψj, (1.16)

where ψ ∈ [−π/2, π/2] is an additive delta-correlated white noise, and noise strength η ∈

[0, 1]. They show that with the variation of noise strength, the system shows continuous

order-disorder (nematic to isotropic disorder state) transition. This transition is similar to

the Berezinskii-Kosterlitz-Thouless (BKT) transition [20] observed in equilibrium systems,

and the system remains in a QLRO state for the nematic alignment. However, active nematic

is different from its equilibrium counterpart because of the presence of GNF in the earlier

system, as Chaté et al. show by their numerical simulation [61]. The existence of GNF in the

active nematics was earlier predicted by Ramaswamy et al. [36, 52] from the hydrodynamic

theory.

1.5.2 Hydrodynamics

Similar to the polar system, here we introduce EOMs for the relevant hydrodynamic vari-

ables of the apolar system. Since the number of particles is conserved, the coarse-grained

density ρ(r, t), as defined in Eq. (1.5), is a conserved field variable. The broken symmetry

variable representing ordering in the apolar system is given by a coarse-grained tensor field

Q(r, t) with components

Qlm(r, t) =
1

ρ(r, t) ∑
j∈Rcg

(
n̂jl(t)n̂jm(t)−

1
2

δlm

)
δ
(
r− rj(t)

)
, (l, m = 1, 2). (1.17)

The conservation criterion for the number of particles governs the EOM for ρ(r, t) as

∂tρ = −∇ ·
(
− 1

γρ
∇δFQ

δρ
+ fρ + Ja

)
, (1.18)
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Bend Splay 

Figure 1.2: Though active nematic dose not have any macroscopic velocity, splay or bend arrange-
ment of the apolar particles introduces local polarity as indicated by the arrows. This local
polarity induces local particle current proportional to the local curvature of the configura-
tion.

where FQ is the nematic free energy functional discussed below. Note that, as compared the

density Eq. (1.5) for the polar case, no convective term appears on the left hand side (LHS)

of Eq. (1.18), since there is no drift velocity in the active nematic [1, 3]. However, because of

the splay and bend arrangement of the apolar SPPs, a local current Ja emerges in the system,

as shown in schematic Fig. 1.2. This local current is proportional to the curvature of the

arrangement, specifically, Ja ∝ ∇ ·Q. Since our main focus is two-dimensional systems, we

do not discuss about the twist deformation, which would be present in higher dimensions

[20, 29]. Appearance of such active current introduces many anomalous characteristics in the

apolar system [1, 3, 36].

The EOM for the order parameter field is given by

∂tQ = − 1
γQ

δFQ

δQ
+ fQ, (1.19)

where the effect of different fast variables has been summarised in the random noise term

fQ, and γQ represents rotational viscosity appearing because of friction from the substrate.
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Thermodynamics of the nematic system in two-dimensions is governed by the free energy

functional [1]

FQ =
∫

ddr

{
−α1(ρ)

2
Q : Q +

α2

4
(Q : Q)2 +

KQ

2
(∇Q)2 + CQQ : ∇∇δρ

ρ̄
+

A
2

(
δρ

ρ̄

)2
}

,

(1.20)

where Frobenius inner product A : B = AlmBlm. The first two terms of the integrand appear-

ing on the RHS of Eq. (1.20) govern mean-field order-disorder transition. The system orders

nematically for α1 > 0, provided α2 > 0. The third term represents Frank free energy density

where the Frank constant KQ is positive. The coupling between the density and the order

parameter fields is taken care by the fourth term, and the last term represents energy cost

because of fluctuation in the density. Injection of the expression for FQ from Eq. (1.20) into

Eq. (1.19) would give us the explicit EOM for Q similar to the equation phenomenologically

introduced by Ramaswamy et al. [36]. The EOMs for ρ and Q could also be derived following

Fokker-Planck approach [62] or through proper coarse-graining of microscopic models [37].

Linearised study of the EOMs for the active nematic suggests that the system shows order-

disorder transition with the variation in noise and density, i. e., in the ( fQ, ρ) plane [37]. The

solutions are linearly stable for deep in both the ordered regime (low fQ and/or high ρ) and

the disordered regime (high fQ and/or low ρ). However, near the transition, the solutions are

linearly unstable, around which band-like structures appear in the system. This instability

was first predicted by Shi and Ma [62]. The appearance of bands suggests coexistence of

ordered and disordered domains near the transition; therefore, the transition is expected to

be discontinuous in nature, contrary to the prediction from the microscopic model described

in Sec. 1.5.1.

Existence of GNF in the active nematic could also be understood from the EOMs of the

slow variables. Considering a small perturbation around a steady-state homogeneous or-

dered solution, one may check that in linearised approximation the static structure factor is

given by S(q) ∼ 1/q2. Therefore, in two spatial dimensions, number fluctuation ∆N ∼ N,

which is in agreement with the available studies for active nematics [1, 3, 36, 37]. Because of

this GNF, the active nematics are intrinsically phase separated, as confirmed by Mishra et al.

through a lattice model study [33].

20



In this thesis, we do not discuss about the active nematics consisting of polar SPPs. How-

ever, one can find extensive studies for those systems in the literature [63–65].

1.5.3 Experiments

Apolar SPPs are available in nature that form active nematic under suitable condition; hu-

man melanocytes that distribute colour pigments in our skin, human fibroblasts which is

a common cell of connective tissues, and human osteoblasts are few such examples. These

cells are usually anisotropic in shape, and the mutual communication amongst these cells

is usually established through steric repulsion and some external drives, viz., chemotaxis

or galvanotaxis. In Ref. [42], Gruler et al. show that, melanocytes remain in isotropic disor-

dered state under weak external drives. As the external drive turns stronger, melanocytes

form nematic state similar to equilibrium liquid crystalline [60], but are active in nature. In

Ref. [41], Kemkemer et al. show the appearance of ±1/2 disclinations [20] in the nematic

state of melanocytes, and characterise splay and bend elastic constants for the system. Ap-

pearance of such disclinations is crucial for nematic states, and has also been observed in

experiment on microtubules [66–68]. There are also many theoretical and numerical studies

for the characterisation and dynamics of these disclinations in the active nematic [30, 68–

71]. Although these experiments characterise isotropic-nematic transition for apolar active

systems, existence of GNF is yet to be verified for these type of biological systems.

Other than biological entities, experimentalists also use artificial apolar rods to study ac-

tive nematic, where a continuous vibration of the container (substrate) acts as the source

of energy. In Ref. [12], Narayan et al. use apolar rod-like constituents of different shapes

and show that particle shapes play a major role in pattern formation. In a following experi-

ment [13], they provide experimental evidence of GNF in the nematic state of apolar active

particles. There they also confirm the earlier theoretical prediction of long-time tail in auto-

correlation [13, 36]. In Ref. [14], Blair et al. report about different types of vortices appearing

in a collection of granular rods vibrated vertically and horizontally.
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1.6 coarsening

In this section, we discuss about coarsening or phase ordering kinetics of different systems.

Given a parameter space, the equilibrium state of a system is determined by the global

minimum of the associated free energy. Let us consider a system in a disordered state at

a high temperature and quench it rapidly to a low temperature so that the corresponding

equilibrium state would be an ordered one. Though the system will achieve that ordered

state, but not immediately. By the term ‘coarsening’, we refer how the system evolves from

that disordered state to the ordered state after a rapid quench. Obviously, coarsening is an

out-of-equilibrium process since the system evolves with time. However, let us first discuss

about the coarsening of systems approaching equilibrium states [72, 73], and thereafter, we

focus on the active systems.

1.6.1 Coarsening towards an equilibrium state

Let us first consider a magnetic substance evolving from para-state to ferro-state after a rapid

quench of temperature T below its critical value Tc. There will be domains of ‘up’ and ‘down’

spins competing for an ‘all up’ or ‘all down’ state for a finite system. this evolution takes

place through Glauber dynamics [74], i. e., random particle flips its spin to achieve the global

minimum of the free energy. Consequently, the magnetisation does not remain conserved.

We distinguish this as a class of systems for which the associated order parameter is not

conserved. Contrary to this class, the order parameter remains constant in a binary mixture.

For T > Tc, the mixture remains in a homogeneous state, whereas for T < Tc, the system

gets phase separated in the equilibrium state. After a rapid quench from T > Tc to T << Tc,

the system evolves through local exchange of the two species. Note, this is different from the

Glauber dynamics, since the relative composition of the two species has to be kept fixed in

this case. For this mixture, the order parameter is measured by the difference in the number

of entities of these two species, and it remains conserved throughout the evolution. This

type of evolution through species exchange in binary mixture or analogous class of systems

is known as Kawasaki dynamics [75]. In both the cases, the evolution takes place through the
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dynamics of domain walls or topological defects. Next, using phenomenological free energy

approach we try to understand the evolution dynamics of the order parameter for both the

cases described above.

Suppose, for a system, a scalar order parameter field φ(r, t) is defined in the coarse-grained

limit. The ordered state of the system could be typically represented by a Landau-Ginzburg

free-energy functional

F [φ] =
∫

ddr
{

f (φ) +
1
2

K(∇φ)2
}

, (1.21)

where f (φ) is a polynomial in φ representing the local free-energy, and the K term represents

energy cost for the domain interface, i. e., topological defect. Evolution dynamics of φ(r, t) in

a system with non-conserved order parameter is given by a time-dependent Ginzburg-Landau

equation

∂tφ(r, t) = − 1
γ

δF
δφ

+ ψ(r, t), (1.22)

where γ represents damping coefficient, and ψ is a random noise. Since the system will

eventually settle to an equilibrium state, γ and ψ are correlated by a FDR. Compared with

this, the evolution dynamics for the conserved order parameter case is given by a Cahn-Hilliard-

Cook equation

∂tφ(r, t) = ∇ ·
{

D
δF
δφ

+ ψ(r, t)
}

, (1.23)

since diffusion of the ingredient species is the prime mechanism of evolution. The diffusivity

D is again related with the noise term. As per the categorisation by Hohenberg and Halperin

[76], Eqs. (1.22) and (1.23) represent Model A and Model B, respectively.

One interested only in the coarsening problem can safely neglect the noise terms in

Eqs. (1.22)-(1.23) [77–79], and understand the processes by solving their deterministic parts.

Rather than going for a rigorous calculation, here we try to understand the coarsening pro-

cesses through intuitive arguments. In both the conserved and the non-conserved cases, the

coarsening takes place through emergence and growth of domains. Although the domain in-
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creases in size in the course of time, its configuration statistically remains the same. This fact

could be realised by checking for dynamical scaling of the equal-time two-point correlation

function [20, 72, 73]

Cφ(r, t) = 〈φ(r0, t)φ(r0 + r, t)〉. (1.24)

Characteristic length Lφ of the domains are usually defined as the distance over which

Cφ(r, t) drops to 1/2. Existence of the dynamical scaling infers that the coarsening is gov-

erned by a single dominant scale, and Lφ is a typical measure of that scale. Growth law for

the system, i. e., time dependence of Lφ could be understood by the ‘motion’ of the associated

defects (domain walls in this case with scalar φ(r, t)). For a system with non-conserved order

parameter, the effective velocity of the domain wall should be equal to its curvature. Now the

wall velocity ∼ dLφ/dt, and the curvature ∼ 1/Lφ, and equating those we obtain Lφ ∼ t1/2.

For the system with conserved order parameter, a similar but more subtle argument has been

provided by Huse [80]. In this case the system evolves through nucleation and growth of

the component present in a vanishing fraction in a small neighbourhood. Therefore, surface

tension has a major role to play which effectively gives local concentration current ∼ Dσ/L2
φ,

σ being the surface tension. This current equated to wall velocity gives Lφ ∼ t1/3.

So far in this section, we have discussed about scalar φ(r, t) only. However, for systems like

superconductor, nematic liquid crystal, etc. we need n−component vector order parameters

[72]. One of the very interesting case for this class is d = 2 = n, where Lφ ∼
( t

ln t

)1/2 for a

vector order parameter field φ(r, t) in two-dimensions [72, 73]. In this case, the topological

defects are vortices, not domain wall.

Although our discussion about coarsening revolves around growth laws for characteristic

length extracted from equal time two-point correlation, the usually measured quantity in

experiments is structure factor Sφ(k, t) =
∫

ddreik·rCφ(r, t), where k represents wave-vector.

This structure factor provides information about the morphology of the domain walls [72,

73]. Moreover, if the structure factor follows dynamical scaling of the form

Sφ(k, t) = Ld
φ f (kLφ), (1.25)
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then near the interface, i. e., for kLφ → ∞, the scaled structure factor follows

f (kLφ) ∼ (kLφ)
−(d+n). (1.26)

This is called generalised Porod’s law.

1.6.2 Coarsening in active systems

The physics of the active systems is significantly different from that of usual equilibrium

systems. Motivated by this fact Dey et al. [81] investigate coarsening of the coarse-grained

density field ρ(r, t) for different types of microscopic active models [31, 32, 46, 61, 63]. They

show that all those active models exhibit non-Porod behaviour. Similar conclusion has earlier

been made by Mishra et al. for active nematic [33] and active polar system [39]. Compared

to earlier prediction of the growth law Lρ ∼ t5/6 [2, 82], Dey et al. [81] propose existence of

another length scale Lρ ∼ t0.25 for the polar system.

Phase separation kinetics for Brownian type of particles, but with an integrated activity

degrees of freedom (active Brownian particle) is studied by Stenhammer et al. [83], and they

show that this kinetics is not very different from its equilibrium counterpart. In a similar

spirit, Wittkowski et al. [84] introduce an ‘Active Model B’ and study phase-separation kinet-

ics for it. As the name suggests, this is a Model B with activity associated with it. In spite

of all these studies, a generalised understanding of phase ordering kinetics for the active

systems is still very poor compared to their equilibrium counterparts. Therefore, we need to

study coarsening in active systems in much more detail.

1.7 effect of inhomogeneity

In the previous sections, we have discussed about systems, equilibrium or otherwise, that

are clean in composition; there were no inhomogeneity present. In reality, such systems could

hardly be found since inhomogeneity, i. e., presence of impurity or disorder, is an inevitable

fact of nature. Presence of such inhomogeneities induces substantial change in the system
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characteristics like equilibrium state, phase transition, scaling laws, ordering kinetics etc. [85–

92]. In general, the inhomogeneities are of two types: (i) quenched – the random parameters

defining the characteristics of the inhomogeneity do not change with time and (ii) annealed

– the random parameters evolve with time. As compared to the quenched case, annealed

inhomogeneities achieve thermal equilibrium in experimental time scales. Therefore, their

effect could be incorporated in the statistical description of the clean system with modified

parameters [93, 94]. However, the situation is not so straight forward with quenched inho-

mogeneities; therefore, we mostly focus on the quenched case. In the last five decades, there

have been extensive studies for understanding the effects of inhomogeneities on systems,

mostly in equilibrium or approaching towards it. Recently, scientists have also started to

look for inhomogeneous active systems [95–99]. In this section, we first discuss effect of in-

homogeneities on non-active (mostly equilibrium) systems, and then provide a brief review

for inhomogeneous active systems.

1.7.1 Non-active systems with inhomogeneity

Let us consider a clean magnetic system represented by the Ising model [18–20]. The Hamil-

tonian of the system consists of a spin-spin interaction term with a strength ε and a field-spin

interaction term in presence of some external field h. The equilibrium configuration of the

system is determined by this Hamiltonian for temperature T below a critical value Tc, and

the system remains in ferromagnetic state, provided ε > 0. On the contrary, for T > Tc,

the equilibrium state is dominated by the entropic part of the free energy, and the system

attains paramagnetic state. However, this simple phenomenology is not accurate for all spa-

tial dimensions, since there exists a lower critical dimension dl so that, for any dimension

d ≤ dl , thermal fluctuations make the ordered state unstable. For Ising model, which could

be regarded as a special case of O(n) model with n = 1 [20], dl = 1. For O(2) model, i. e.,

XY model, the lower critical dimensionality is 2, above which a broken-symmetry state with

long range order can be sustained. In the marginal case of d = 2, BKT state emerges in the

XY model [20, 88].
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Now suppose the system is not clean, rather some non-magnetic or other kind of magnetic

molecules replace the original spins. This scenario with quenched inhomogeneities could be

tackled by the Ising model (in the simplest case) with non-uniform exchange interactions, i.

e., ε is not same throughout the whole system. This modified description, commonly known

as random bond Ising model (RBIM) in literature, has been used extensively to study inhomo-

geneous systems. An alternative way to study inhomogeneous systems is to regard ε to be

uniform everywhere, but the external field h to be non-uniform. In literature, this descrip-

tion is known as random field Ising model (RFIM). For both these models, the lower critical

dimension is 2, and even in the marginal case of d = 2, the ordered state is unstable [88].

As compared to the Ising case, dl = 4 for systems with continuous symmetry like XY model

[85]. Quenched inhomogeneities can also induce a much complicated scenario compared to

RBIM and RFIM, viz., spin glass [90, 100], which we do not discuss here.

Scientists have also studied the effect of quenched inhomogeneities on coarsening of non-

active systems. In Ref. [91], Corberi et al. have studied RBIM with Glauber dynamics, and

shown that there is a crossover in growth law from power law to logarithmic growth. Later,

they draw a similar conclusion for RFIM [92]. In both the cases superuniversality [20] is

found not to hold. In a recent study [101], coarsening in RFIM has been studied for Kawasaki

dynamics.

1.7.2 Active systems with inhomogeneity

It is only recently that scientists have started to look for the effect of inhomogeneities on

active systems [102]. In a surprising work, Chepizhko et al. [95] show that, in presence of

inhomogeneities, a certain amount of noise facilitates optimal flocking of the polar SPPs! This

is something counter intuitive, since one would naively expect more ordering with less noise.

However, since the self-propulsion nature of the SPPs is the principal reason of true long

range order in two-dimensions, presence of inhomogeneities hinder the mutual information

transport within the sub-flocks. Therefore, the system needs an optimal noise to overcome

those hindrance and establish order in the system. In Ref. [98], Quint and Gopinathan report

swarming phase transition on a two-dimensional percolated lattice in presence of topological
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inhomogeneities. Sándor et al. introduces different type of dynamic states of SPPs in presence

of quenched inhomogeneities [99]. In an experiment with artificial SPPs, Morin et al. show

that, in presence of high density inhomogeneities, the flock becomes extremely tortuous

and gets destroyed [97]. In Ref. [96], Yllanes et al. consider two species of SPPs with different

‘intentions’, and show that the flock of one species could easily be destroyed by a few number

of other species.

1.8 objective and organisation of this thesis

The previous sections highlight about developments in the field of active matter, polar or

apolar, and provide comparison with the well understood systems, mostly in equilibrium.

With these understanding as the basis, we have unveiled further aspects of the active systems

that have been organised in the following chapters. In Chapter 2, we introduce a minimal

lattice model for active nematic comprised of apolar SPPs, and construct a phase diagram

in temperature versus density plane. In Chapter 3, we study coarsening of polar SPPs in

clean as well as inhomogeneous environment. In Chapter 4, we discuss about the absence of

long range order in two-dimensional polar SPPs in presence of quenched inhomogeneities.

In Chapter 5, we propose a mechanism for better and robust flocking in inhomogeneous

environment, following which, we conclude this thesis in Chapter 6.
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2
A L AT T I C E M O D E L S T U D Y O F A C T I V E N E M AT I C

2.1 introduction

Theoretical studies of the active nematic are mostly done by using the relevant hydrody-

namic equations of motion (EOMs) [36, 37, 62, 68–71, 103], microscopic rule based simu-

lation of point particles [61] or Brownian dynamics simulation [30]. These studies indeed

provide significant understanding of the active nematic, e. g., order-disorder transition in the

density-temperature plane, presence of long-wavelength instability near the transition, GNF

in the nematic state, associated defect dynamics, etc. However, study of lattice models is in

general interesting for development of simplified theories, and it often provides insight into

complex systems. In this chapter1, we introduce a lattice model for a two-dimensional active

nematic, explore various states of the system in the density-temperature plane, and compare

it with the corresponding equilibrium model. Our model is similar to the Active Ising model

discussed in Chapter 1.4.4 for the polar system [34, 35]; but we include volume exclusion

that often introduces interesting features like typical pattern formation [104, 105] or density

induced motility [106] in the system.

This chapter is organised as follows. In Sec. 2.2 we define the lattice model for the active

nematic and its equilibrium counterpart. Details of the numerical simulations are presented

in Sec. 2.3. We construct a phase diagram for the active nematic in the density-temperature

plane, as presented in Sec. 2.3.1. There we note – (i) disordered isotropic (I) state in low

density regime, (ii) locally ordered inhomogeneous mixed (IM) state in intermediate density

1 The work reported here is based on the paper “Order-disorder transition in active nematic: A lattice model
study”, Rakesh Das, Manoranjan Kumar and Shradha Mishra, Scientific Reports 7, 7080 (2017).
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regime, and (iii) bistability between the IM and a homogeneous globally ordered (HO) state

in high density regime. In contrast to the continuous isotropic to nematic (I-N) transition

in the equilibrium model, the I to IM state transition in the active nematic in the low tem-

perature regime occurs with a jump in order parameter. This transition occurs at a density

lower than its critical value in the equilibrium model, and the system forms clear bands

(BS) in this regime. Different states appearing in the active nematic and the corresponding

equilibrium nematic are characterised by a two-point orientation correlation in Sec. 2.3.2. Ori-

entation fluctuation in the states corresponding to the high density limit are characterised in

Sec. 2.3.3. We justify the jump in the order parameter and the shift in the transition density

in the active model by analysing their coarse-grained hydrodynamic EOMs in Sec. 2.4. We

close this chapter with a brief summary of results and concluding remarks in Sec. 2.5.

2.2 model

We consider a collection of apolar self-propelled particles (SPPs) on a two-dimensional (2D)

square lattice, as shown in schematic Fig. 2.1(a). Occupation number ‘ni’ of the ith lattice site

can take values 1 (occupied) or 0 (unoccupied). Orientation θi of apolar particle at ith site

can take any value between 0 and π. The model follows two sequential processes at every

step; first, a particle moves to a nearest neighbouring site with some probability, and then

orientation of the particle is updated based on its nematic interaction with its nearest neigh-

bours. We define two kinds of models on the basis of the particle movement: (i) ‘Equilibrium

model’ (EM) – particle moves with equal probability 1/4 to any of the four neighbouring

sites (Fig. 2.1(b)), (ii) ‘Active model’ (AM) – in this model the particle movement occurs in

two steps. First, it chooses a direction along which it is more inclined. As shown in Fig. 2.1(c,

d), it chooses the direction of movement along BD if π/4 < θ ≤ 3π/4 and along AC oth-

erwise. In the second step, it moves to a randomly selected site between the two nearest

neighbouring sites along the chosen direction. For example, if BD is selected as the direction

of movement, then the particle moves to randomly selected site B or D in the second step.

In both the models, we consider volume exclusion, i. e., particle movement is allowed only if

the selected site is unoccupied.
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Figure 2.1: (a) Two dimensional square lattice with occupied (n = 1) or unoccupied (n = 0) sites.
Filled circles indicate the occupied sites. Inclinations of the rods towards the horizontal
direction show respective particle orientations θ ∈ [0, π]. (b) Equilibrium move: particle
can move to any of the four neighbouring sites with equal probability 1/4. (c, d) Active
move: particle can move to either of its two neighbouring sites with probability 1/2, if
unoccupied, in the direction it is more inclined to, i. e., along BD in (c), and AC in (d).

In both the models, the particles also interact with their nearest neighbours. The interaction

depends on the relative orientation of the particles and is represented by a modified Lebwohl-

Lasher Hamiltonian [107]

H = −ε ∑
<ij>

ninj cos 2(θi − θj), (2.1)

where ε is the interaction strength between two neighbouring particles. The interaction in

Eq. (2.1) governs the orientation update of the particle. We employ Metropolis Monte-Carlo

(MC) algorithm [22] for orientation update of the particle after the movement trial. In both

the models, an order parameter defining the global alignment of the system does not re-

main conserved during the MC orientation update described above. In actual granular or

biological systems where mutual alignment emerges because of steric repulsion, orientation

of particles need not to follow a conservation law. Therefore, an order parameter defined
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by coarse-graining the orientation in our present model is a class of non-conserved order

parameter, i. e., Model A [76] as described in Sec 1.6.1.

Both the models EM and AM comprise two different physical aspects – motion of the parti-

cles and nematic interaction amongst the nearest neighbours. If the particles are not allowed

to move, the models reduce to an apolar analogue of the diluted XY model with nonmag-

netic impurities [108], where impurities and spins are analogous to vacancies and particles,

respectively. However, unlike the diluted XY model, particles in these models are dynamic.

In the EM, the particle diffuses to neighbouring sites, whereas it moves anisotropically in the

AM. In general, the anisotropic movement of the active particles arises because of the self-

propelled nature of the particles in many biological [41] and granular systems [12, 13]. This

move produces an active curvature coupling current in the coarse-grained hydrodynamic

EOMs [36, 37]. The AM does not satisfy the detailed balance principle [22] because of the ori-

entation update after the anisotropic movement. The coupling of the particle movement with

the orientation update in our active model is analogous to the active Ising model introduced

by Solon and Tailleur [34, 35], where the probabilistic flip of the spins is an equilibrium

process, whereas the out-of-equilibrium aspect of the model is attributed to the anisotropic

movement probability of the spins. However, their orientation update algorithm [34, 35] is

similar to kinetic Monte-Carlo, whereas we use Metropolis Monte-Carlo algorithm to update

particle orientation.

2.3 numerical study

We consider a collection of N particles with random orientation θ ∈ [0, π] homogeneously

distributed on a L × L lattice (L = 256, 400, 512) with periodic boundary. Packing density

of the system is defined as C = N/L2, which we consider as a dimensionless quantity. We

choose a particle randomly, move it to a neighbouring site obeying exclusion, and then up-

date its orientation using Metropolis algorithm. In each iteration we repeat the same process

for N times, and we use 1.5× 106 iterations to achieve the steady-state of the system. We

obtain the steady-state results by averaging the observables over next 1.5 × 106 iterations

and use more than twenty realisations for better statistics.
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The ordering in the system is characterised by a scalar order parameter defined as

S =

√√√√( 1
N ∑

i
ni cos(2θi)

)2

+

(
1
N ∑

i
ni sin(2θi)

)2

. (2.2)

It is proportional to the positive eigenvalue of the nematic order parameter Q [60], as dis-

cussed in Sec. 1.5. It takes the minimum value 0 in the disordered state and the maximum

value 1 in the complete ordered state. In this chapter, we take care of the temperature T by

a dimensionless quantity, called ‘inverse temperature’, βε = ε/kBT, where kB is the Boltz-

mann constant. First we study the EM as a function of the inverse temperature for different

packing densities, where we note that the system shows disordered isotropic to nematic state

(I-N) transition with decreasing temperature. In contrast to the first order I-N transition in

the equilibrium Lebwohl-Lasher model in three dimensions (3D) [20, 107], we note continu-

ous transition for the EM defined in 2D. The observed nature of the transition supports the

study by Mondal and Roy [109]. Similar to the diluted XY model [108], the critical inverse

temperature βc(C) increases with density in the EM. This result is shown in Appendix 2.A.

2.3.1 Phase diagram – equilibrium and active model

We construct phase diagram for both the equilibrium model and the active model on the

density-temperature plane. As shown in Fig. 2.2, two distinct states appear in the EM - (i) an

equilibrium isotropic (EI) state on the left side of the red boundary and (ii) an equilibrium

nematic (EN) state on the right side of the red boundary. In the EI state, particles remain

disordered and homogeneously distributed throughout the system. Consequently, the scalar

order parameter S ' 0 in this state. With increasing density or decreasing temperature,

the particles get mutually ordered and form the EN state (S > 0). As shown in Fig. 2.3,

for a fixed temperature S increases continuously with the density, and the system enters

into the nematic state. Both the particle orientation and the coarse-grained density remain

homogeneous in the EN state, as shown in the real space snapshot Fig. 2.4.

Similar to the EM, the active system remains in a homogeneous disordered isotropic (I)

state in the high temperature and/or low packing density regime (cyan coloured regime in
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Figure 2.2: Phase diagram for both the equilibrium and the active nematic in the density versus in-
verse temperature plane. The equilibrium system remains in the isotropic (EI) state in the
low density regime (on the left of the solid line) and in the nematic (EN) state in the high
density regime (on the right of the solid line). The active nematic goes from the disordered
isotropic (I) state to the locally ordered inhomogeneous mixed (IM) state with increasing
density or decreasing temperature. The I - IM transition occurs with the appearance of
clear bands (BS) in the low temperature regime. In the high density regime the active
nematic shows bistability between the IM and the homogeneous globally ordered (HO)
state.
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Figure 2.3: Scalar order parameter versus packing density plot for 400 × 400 system size at βε =
2.0. The equilibrium system (E, solid line) shows continuous isotropic to nematic state
transition with increasing density. The active system goes from the isotropic (I) state to
the locally ordered inhomogeneous mixed (IM, ×) state. In the high density regime the
system shows bistability between the IM state and the homogeneous globally ordered
(HO, •) state.
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Figure 2.4: Left panel shows snapshot of the particle inclination towards the horizontal direction.
Colour bar ranging from zero to one indicates vertical to horizontal orientation, respec-
tively. BS is the banded state configuration shown for (βε, C) = (2.0, 0.38). IM, HO and
EN state configurations are shown for (βε, C) = (2.0, 0.78). Right panel shows the coarse-
grained density in the respective states.
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the phase diagram Fig. 2.2). With increasing density or decreasing temperature, beyond the

I state, the active system enters into an inhomogeneous mixed (IM) state (golden regime

in the phase diagram Fig. 2.2), where locally ordered high-density domains coexist with

disordered low-density regions. In the low temperature regime (βε ∈ [1.9, 2.2]), the I to IM

state transition with increasing C occurs with a jump in the scalar order parameter S, as

shown in Fig. 2.3. In the very beginning of the IM state, as indicated by cross symbols in

Fig. 2.2, we find a banded state (BS) in the low temperature regime, where particles cluster

and align themselves within a strip to form band. However, out of the strip the system

remains disordered with low local density, as shown in the real space snapshot Fig. 2.4. On

further increment of the packing density C, bands formed in different directions start mixing

leaving the system with many locally ordered high density patches separated by low density

disordered regions. Typical real space snapshots for the orientation and the coarse grained

density in the IM state are shown in Fig. 2.4. The jump in the S − C curve reduces with

increasing temperature, and no bands appear in the high temperature (βε < 1.9) regime.

Fig. 2.3 shows that the I to BS transition occurs in the low temperature regime with a jump

in S at a density lower than the corresponding equilibrium I-N transition density CIN . These

bands appear because of the large activity strength. A linear stability analysis, as detailed

in Sec. 2.4, shows that the large activity strength induces an instability in the disordered

isotropic state. This instability goes away for small activity strength or at high temperature.

We also do a renormalised mean field calculation of an effective free energy written for the

active nematic. The calculation predicts a jump in the scalar order parameter and shows a

shift in the disordered (S = 0) to ordered (S 6= 0) state transition density. Both the jump

in S and the shift in the transition density reduce with the activity strength or increasing

temperature. The I to BS transition is a first order transition. The shift in the disorder-order

transition point is a common feature of the active systems. For large activity and low tem-

perature, if the system density is above a certain value but less than CIN , the giant number

fluctuation (GNF) present in these systems causes local alignment with local density higher

than CIN . As shown in Fig. 2.5, we observe the presence of GNF in the ordered active states

in our model. Due to activity these locally ordered regions move anisotropically and com-

bine with nearby region with similar local ordering. So larger ordered region forms at mean
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Figure 2.5: Density fluctuation ∆N =
√
< N2 > − < N >2. All the active ordered states show large

density fluctuation obeying the relation ∆N ∼ 〈N〉ζ with ζ > 1/2. The active disordered
isotropic state shows normal density fluctuation with ζ = 1/2.

0 0.08 0.16
S

0

0.1

0.2

P(
S)

  = 0.00

(c)

Figure 2.6: The I to IM transition at low temperature occurs with a jump in S where the particles
form bands (BS). Distribution of the scalar order parameter near the I - BS transition at
(βε, C) = (2.0, 0.37) shows two peaks.
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density lower than the equilibrium I-N transition density. Therefore, we find a disordered to

ordered state transition at a lower density. For large activity strength, I-BS transition occurs

with the jump in scalar order parameter. In our numerical study we calculate the probability

P(S) of the scalar order parameter averaging over many iterations and realisations near the

I-BS transition point. Fig. 2.6 shows P(S) has two peaks, which further supports the first

order I-BS transition for large activity strength.

In the high density regime (red coloured regime in the phase diagram Fig. 2.2), the AM

shows bistability, i. e., it can be either in the locally ordered IM state or in a homogeneous

globally ordered (HO) state. As shown in Fig. 2.3, the S− C curve for fixed temperature bi-

furcates in the high density regime; the lower branch corresponds to the earlier discussed IM

state, whereas the higher branch indicates the existence of the globally ordered state. Fig. 2.4

shows that the system possesses less density inhomogeneity in the HO state compared to the

IM state. A finite size scaling of both the HO and the IM state, as shown in Fig. 2.7(a), shows

that the active nematic possesses non-zero finite order in both these states. Order parameter

time series shown in Fig. 2.7(b) confirms the bistability of the system in the high density

regime. Bistability is not generally seen in other agent based numerical simulations of point

particles [110]; it appears because of finite filling constraint of the model. This feature can

be suppressed if we allow more than one particle to sit together. In the complete filling limit

C = 1.0, the AM is equivalent to the EM, and it shows the globally ordered HO state only.

2.3.2 Two-point orientation correlation

We further characterise various states on the basis of the two-point orientation correlation in

the different states of the equilibrium and the active nematic. It is defined as

g2(r) =< ∑
i

nini+r cos [2 (θi − θi+r)] / ∑
i

n2
i >, (2.3)

where r represents interparticle distance, and < . > signifies an average over many real-

isations. Fig. 2.8(a, b) show g2(r) versus r plots on log-log scale for the AM and the EM,

respectively, for a fixed inverse temperature βε = 2.0. In the AM, g2(r) decays exponentially
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Figure 2.7: (a) Finite size scaling of S for both the HO and the IM state at (βε, C) = (2.0, 0.76). (b)
Order parameter time series show that the active system flips between the HO and the IM
state in the bistable regime. Two time series are shown for two different parameter values
in the high density regime.

at low packing density C < 0.37, i. e., in the isotropic state. Therefore, the active isotropic

is a short range ordered (SRO) state. In the BS at C = 0.38, g2(r) decays following a power

law. Therefore, the system is in a quasi-long range ordered (QLRO) state. Ordering increases

with density. At high packing density, correlation function confirms the bistability in the

active system. At C = 0.82, g2(r) shows power law decay in the HO state, whereas in the

IM state g2(r) decays abruptly after a distance r. The abrupt change in g2(r) at a certain

distance indicates the presence of locally ordered clusters in the IM state. In contrast, the

equilibrium system shows a transition from SRO (exponential decay) isotropic state at low

density C <∼ 0.48 to QLRO (power law decay) nematic state at high density C >∼ 0.50.
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Figure 2.8: Two-point orientation correlation shown for βε = 2.0 on log-log scale. (a) Active model:
g2(r) decays exponentially at low density (©, �) and algebraically at high density (�, 4).
In the bistable regime at high density (4), g2(r) decays algebraically in the HO state and
abruptly in the IM state. (b) Equilibrium model: g2(r) decays exponentially at low density
(©, �) and algebraically at high density (�, +,4). Continuous lines are the respective fits,
fitted for more than one decade.

2.3.3 Orientation distribution and autocorrelation of the mean orientation

We compare the steady-state properties of the active and the equilibrium models in the

high density limit. First we calculate the steady-state (static) orientation distribution P(θ)

from a snapshot of particle orientation θ. As shown in Fig. 2.9(a), both the active HO and

the equilibrium nematic show Gaussian distribution of orientation. Peak position of P(θ)

for both the EN and the HO state can appear at any point between 0 and π because of

the continuous broken rotational symmetry of the Hamiltonian shown in Eq. (2.1). Data

shown in Fig. 2.9(a) is for one realisation only, and for other realisations also the distribution
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Figure 2.9: Steady-state characteristics of high density states. (a) Orientation distribution P(θ) of parti-
cles calculated from one snapshot in the steady-state. P(θ) fits with Gaussian distribution
(continuous lines) for both the HO and the EN states. The IM state shows broad distribu-
tion of θ. (b) Distribution of the mean orientation P(θ̄) calculated from θ̄ of each snapshot
in the steady-state. P(θ̄) is broad for the EN state in comparison to the HO state.

P(θ) remains Gaussian with peak at other θ values. Therefore, orientation fluctuation of the

particles in the active HO state is same as in the equilibrium nematic state. The distribution

P(θ) in the IM state is very broad and spans over the whole range of orientation. Therefore,

the system possess no global ordering in the IM state.

We also calculate the time averaged distribution P(θ̄) of mean orientation of all the par-

ticles in the active HO and the equilibrium nematic states. The mean orientation θ̄(t) of all

particles is calculated for each iteration time t in the steady-state. The distribution P(θ̄) of the

mean orientation is obtained from these θ̄(t) data. This distribution is a measure of the fluc-
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Figure 2.10: Steady-state characteristics of high density states. Steady-state autocorrelation Cθ̄(t) of
the mean orientation of the system. All plots are shown for (βε, C) = (2.0, 0.80).

tuation in the global orientation of the particles in the steady-state. As shown in Fig. 2.9(b),

P(θ̄) in the active HO state is narrow in comparison to the broad distribution in the EN state.

We also calculate the autocorrelation of the mean orientation defined as

Cθ̄(t) =<
1
t

t

∑
τ=1

cos
[
2
{

θ̄ (t0)− θ̄ (t0 + τ)
}]

>, (2.4)

where t0 is an arbitrary simulation time in the steady-state. in the steady-state. As shown in

Fig. 2.10, Cθ̄(t) decreases with time in the EN state, but remains unchanged in the active HO

state. Both these results imply that the fluctuation in the global orientation direction θ̄ in the

active HO state is small compared to the EN state. We do not calculate the mean orientation

θ̄ in the active IM state, because the system possesses no global ordering in this state.

2.4 hydrodynamics of the active model at low density

In this section we write the hydrodynamic EOMs for the active model and characterise the

low density states of the system. As discussed in Sec. 1.5.2, the relevant slow variables for the

coarse-grained AM are number density ρ(r, t) (for definition, see Eq. (1.5)) and tensor order

parameter Q(r, t) (see Eq. (1.17) for definition). Here we represent the order parameter by a
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modified variable Π(r, t) = ρ(r, t)Q(r, t) for simplicity. The EOMs for the slow variables are

as follows [36, 37]:

∂tρ = a0∇i∇jΠij + Dρ∇2ρ (2.5)

and

∂tΠij = {α1 (ρ)− α2 (Π : Π)}Πij + β

(
∇i∇j −

1
2

δij∇2
)

ρ + DΠ∇2Πij. (2.6)

The total number of particles being a conserved quantity of the system, Eq. (2.5) represents

a continuity equation ∂tρ = −∇ · J where the current Ji = −a0∇jΠij − Dρ∇iρ. The first

term of Ji consists of two parts – an anisotropic diffusion current Jp1 ∝ Qij∇iρ and an active

curvature coupling current Ja ∝ a0ρ∇jQij where a0 represents activity strength of the system.

The second term represents an isotropic diffusion Jp2 ∝ ∇ρ. The α terms in Eq. (2.6) represent

mean field alignment in the system. We choose α1(ρ) = (ρ/ρIN − 1) as a function of density

that changes sign at some critical density ρIN . The β term represents coupling with density.

The last term represents diffusion in order parameter that is written under equal elastic

constant approximation for two-dimensional nematic. The steady-state solution ρ(r, t) = ρ0

and Π(r, t) = Π0, where Π0 =
√

α1 (ρ0)/α2, of Eqs. (2.5) and (2.6) represents a homogeneous

ordered state for α1(ρ0) > 0 at ρ0 > ρIN , and a disordered isotropic state for α1(ρ0) < 0 at

ρ0 < ρIN . The Eqs. (2.5) and (2.6) represent similar phenomenology as discussed in Sec. 1.5.2.

We study the linear stability of the disordered isotropic state (Π0 = 0) by examining the

dynamics of spatially inhomogeneous fluctuations δρ(r, t) = ρ(r, t) − ρ0, δΠ11 = Π11(r, t),

and δΠ12 = Π12(r, t). We obtain the linearised coupled equations of motion for small fluctu-

ations as

∂tδρ = a0

(
∂2

x − ∂2
y

)
δΠ11 + 2a0∂x∂yδΠ12 + Dρ∇2δρ, (2.7)

∂tδΠ11 = α1 (ρ0) δΠ11 + DΠ∇2δΠ11 +
β

2

(
∂2

x − ∂2
y

)
δρ, (2.8)

∂tδΠ12 = α1 (ρ0) δΠ12 + DΠ∇2δΠ12 + β∂x∂yδρ. (2.9)
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Using Fourier transformation defined as

Y (q, λ) =
∫

eiq.reλtY (r, t) drdt, (2.10)

we get linear set of equations in the Fourier space as

λ


δρ

δΠ11

δΠ12

 = M


δρ

δΠ11

δΠ12

 , (2.11)

where M is the coefficient matrix as obtained from Eqs. (2.7), (2.8) and (2.9) after the trans-

formation. We solve Eq.(2.11) for the hydrodynamic modes λ. We choose qx = qy = q√
2

since

both the directions are equivalent. Therefore, we obtain

(
λ− α1 (ρ0) + DΠq2) {(λ + Dρq2) (λ− α1 (ρ0) + DΠq2)− 1

2
a0βq4

}
= 0. (2.12)

For small wave-vector q limit, we can find an unstable mode

λ+ = −2Dρq2 +
a0βq4

2|α1(ρ0)|
−

a0βq6(DΠ − Dρ)

α2
1(ρ0)

. (2.13)

For small Dρ and large actvitity a0 this mode becomes unstable for q < qc, where

q2
c =
|α1(ρ0)|

2∆D
+

1
2

√(
|α1(ρ0)|

∆D

)2

−
8Dρα2

1
∆Da0β

, (2.14)

provided ∆D = DΠ − Dρ is positive and a0β > 8Dρ∆D. Therefore, the unstable mode λ+

causes the I - BS transition for small diffusivity, i. e., at low temperature and for large activity

strength a0.

We also calculate the jump in the scalar order parameter S and the shift in the transition

density from Eqs. (2.5) and (2.6). A homogeneous steady-state solution of these equations

gives a mean field transition from the isotropic to the nematic state at density ρIN where

α1(ρ) changes sign. Using renormalised mean field (RMF) method, we calculate an effective
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free energy Fe f f (S) close to the order-disorder transition where S is small. We consider

density fluctuations δρ and neglect order parameter fluctuations. The effective free energy is

Fe f f (S) = −
b2

2
S2 − b3

3
S3 +

b4

4
S4, (2.15)

where b2 = α1(ρ) + α′1c and c is a constant. α′1 = ∂α1/∂ρ|ρ0
, b3 = a0ρ0α′1/2Dρ and b4 = 1

2 ρ2
0α2.

Both b3 and b4 are positive. A detailed calculation for Fe f f is shown in the Supplementary

Information. The density fluctuations introduce a new cubic order term in the free energy

Fe f f (S) that is proportional to the activity strength a0. The presence of such term produces

a jump ∆S = Sc = 2b3/3b4 at a density ρc = ρIN(1− 2b2
3/9b4) < ρIN . Fluctuation in density

produces a jump in order parameter and shifts the critical density. Such type of fluctuation

induced transitions are called fluctuation dominated first order phase transitions in statistical

mechanics [111] and are widely studied for many systems [112, 113]. The jump in S and the

shift in the transition density are proportional to the activity strength a0, and for a0 = 0 we

recover the equilibrium transition.

2.5 discussion

In this chapter, we have introduced a minimal lattice model for the active nematic and stud-

ied different ordering states in the density-temperature plane. A brief summary of the re-

sults is as follows. In the low density regime, the system is in the disordered isotropic (I)

state with short range orientation correlation amongst the particles. In the low temperature

regime, large density fluctuation in the active system induces a first order transition from

the isotropic to the banded state with a jump in the scalar order parameter at a density lower

than the equilibrium isotropic-nematic (I-N) transition density. The linear stability analysis

of the isotropic state shows an instability for large activity strength in the low temperature

regime. Such instability governs the band formation at density below the equilibrium I-N

transition density. As we further increase density, bands vanish and locally ordered patches

appear in the inhomogeneous mixed (IM) state. Renormalised mean field calculation con-

firms the jump in the scalar order parameter and the shift in the transition density. With
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increasing temperature the shift in the transition density and the jump in scalar order pa-

rameter decreases, and no bands appear in the system. The IM state is a state with coexisting

aligned and disordered domains, similar to the coexisting or defect-ordered states found in

Ref. [30, 68–71, 110, 114, 115].

In the high density regime, the active nematic shows switching between the IM (low S)

and the homogeneous ordered (HO, high S) states, i. e., the system shows bistability. In the

complete filling limit and with excluded volume assumption the active model reduces to the

equilibrium model. Therefore, the active model tends to show a homogeneous nematic state

in the high density regime. However, large activity strength makes the HO state unstable

and leads the system to the IM state. This instability in the HO state is similar to the earlier

studies in Ref. [30, 114]. Ngo et al. [110] considered a two dimensional off-lattice model

for the active nematic without the exclusion constraint. In the low and moderate density

regime, they show a homogeneous disordered phase and an inhomogeneous chaotic phase,

which are similar to the isotropic and the IM states, respectively. Similar to their study,

the spanning area of the IM state (golden regime in the phase diagram Fig. 2.2) along the

density axis decreases with the increasing temperature. In the high density limit, they note

a homogeneous quasi-ordered phase only, which is similar to the HO state in our study.

However, we show the bistability between the HO and the IM state in this density limit.

In conclusion, our lattice model for the active nematic is a simple one to design and

execute numerically, and easy to compare with the corresponding equilibrium model. It

shows new features like the BS in the low temperature regime and the bistability in the high

density regime, as well as some of the earlier characterised states, e. g., the IM state. It also

shows many basic features of the active nematic like large number fluctuation, long-time

decay of orientation correlation, transition from SRO isotropic to QLRO nematic state. The

shift in the transition density due to activity strength compared to the equilibrium model

can be tested in experiments where activity can be tuned. We expect the emergence of the

bistability in the high density regime in a two dimensional experimental system composed

of apolar particles with finite dimension and high activity strength. It would be interesting to

study the model without volume exclusion. In this study, particle orientation has continuous

symmetry of O(2). Therefore, the equilibrium limit of our model is an apolar analogue
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of the two-dimensional XY model. One can also study the model with discrete orientation

symmetry as in Ref. [34, 35, 104] and compare the results with the corresponding equilibrium

model.
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2.a order-disorder transition in the equilibrium model
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Figure 2.A.1: Order-disorder transition in the equilibrium model. Main – scalar order parameter S ver-
sus inverse temperature βε plot for different density C. With increasing βε the system
goes from the isotropic (small S) to the nematic (large S) state. The critical tempera-
ture for C = 1 matches with the corresponding value for the equilibrium XY model
[108]. Inset – the critical inverse temperature decreases with increasing density. Similar
phenomenon was earlier observed for diluted XY model [108].

2.b renormalised mean field (rmf) study of active nematic for small scalar

order parameter

In this appendix section, we write an effective renormalised mean field free energy for the

scalar order parameter S under the small S approximation. We consider the fluctuations

in the density and ignore the order parameter fluctuations in the coupled hydrodynamic
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equations of motion for the active nematic. Density fluctuation introduces a cubic order term

in S in the effective free energy. Such term produces a jump in S at a new transition density

ρc lower than the equilibrium I-N transition point ρIN . Shift in the transition density and

the jump ∆S are directly proportional to the activity strength a0. We recover the equilibrium

limit for zero a0.

If we Consider a small perturbation over the homogeneous steady-state solution of Eqs. (2.5)

and (2.6), we obtain from the density equation,

a0∇i∇jΠij + Dρ∇2δρ = 0

⇒ a0∇jΠij + Dρ∇iδρ = c ≡ constant, (2.16)

where Π11 = −Π22 = S
2 cos(2θ), Π12 = Π21 = S

2 sin(2θ) and θ represents coarse-grained

direction of the broken symmetry (see Sec. 1.5.2). Considering only the lowest order terms

in S and θ, we obtain

∂xδρ = − a0ρ0

2Dρ
∂xS⇒ δρ(x) = − a0ρ0

2Dρ
S + c1 (2.17)

and

∂yδρ =
a0ρ0

2Dρ
∂yS⇒ δρ(y) =

a0ρ0

2Dρ
S + c2. (2.18)

Here we assume the system is aligned along one direction, and the variation in orientation

is only along the perpendicular direction. Therefore, we can choose either of Eqs. (2.17)

or (2.18). Two constants c1 and c2 are the fluctuations in density when the nematic order

parameter is zero.

Now from the order parameter Eq. (2.6), we obtain an effective equation for S as

∂tS =

{
α1 (ρ)−

ρ2

2
α2S2

}
S +O(∇2S) +O(∇2ρ). (2.19)
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We neglect all the derivative terms and retain only the polynomials in S, i. e., we neglect

higher order fluctuations. The Taylor expansion of α1(ρ) about the mean density ρ0 gives

α1(ρ) = α1(ρ0 + δρ) = α1(ρ0) + α′1δρ where α′1 = ∂α1
∂ρ |ρ0 . This gives

∂tS =

{
α1 (ρ0) + α′1δρ− ρ2

0
2

α2S2
}

S. (2.20)

We can write an effective free energy Fe f f (S) so that

∂tS = −
δFe f f (S)

δS
. (2.21)

Substituting the expression for δρ from Eq. (2.18), we obtain

−
δFe f f

δS
= S

{
α1 (ρ0) + α′1

(
a0ρ0

2Dρ
S + c2

)
− ρ2

0
2

α2S2
}

. (2.22)

Therefore,

Fe f f (S) = −
b2

2
S2 − b3

3
S3 +

b4

4
S4, (2.23)

where b2 = α1 (ρ0) + α′1c2, b3 =
a0ρ0α′1

2Dρ
and b4 = 1

2 ρ2
0α2. Since the free energy is a state function,

we have assumed the integration constant to be zero. Therefore, the fluctuation in the density

introduces a cubic order term in the effective free energy Fe f f (S). Effective free energy in

Eq. (2.23) is similar to the Landau free energy with a new cubic order term [20]. Now we

calculate the jump ∆S and the new critical density from the coexistence condition for free

energy. Steady-state solutions of order parameter (S = 0 for isotropic and S 6= 0 for ordered

state) are given by

δFe f f

δS
=
(
−b2 − b3S + b4S2) S = 0. (2.24)

Non-zero S is given by −b2 − b3Sc + b4S2
c = 0. Coexistence condition implies

Fe f f (Sc) =

(
−b2

2
− b3

3
Sc +

b4

4
S2

c

)
S2

c = Fe f f (S = 0) = 0. (2.25)
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Hence we get the solution

Sc = −
3b2

b3
(2.26)

and

bc
2 = −2b2

3
9b4

. (2.27)

Therefore, the jump at the new critical point is ∆S = 2b3
3b4

. Since b4 > 0 and hence bc
2 < 0, the

new critical density

ρc = ρIN

(
1− 2b2

3
9b4

)
< ρIN (2.28)

is shifted to a lower density in comparison to the equilibrium transition density ρIN . Eq. (2.28)

gives the expression for new transition density as given in the main text. Therefore, using

renormalised mean field theory we find a jump ∆S at a lower density as compared to the

equilibrium I-N transition density.
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3
O R D E R I N G D Y N A M I C S O F S E L F - P R O P E L L E D PA RT I C L E S I N A N

I N H O M O G E N E O U S M E D I U M

3.1 introduction

The study of coarsening in self-propelled particles (SPPs) is complicated by the fact that

the system settles into a non-equilibrium steady-state (NESS). There have very few studies

[2, 39, 46, 81–84] of the coarsening kinetics from a homogeneous disordered state to this

asymptotic NESS, as we have discussed in Sec. 1.6.2. The ordering dynamics of an assembly

of SPPs, both in clean and inhomogeneous environments, is important to understand growth

processes in many natural and granular systems. In this chapter1, we address this problem

for the polar SPPs.

The SPPs are defined by their position and orientation (direction of velocity). Each particle

moves along its orientation with a constant speed vs and tries to align with its neighbours.

In addition to this, we introduce an inhomogeneous random field h of fixed strength ∆

and random orientation, but quenched in time. This random field locally aligns the orien-

tation field along a preferred (but random) direction. Such a field may arise from physical

inhomogeneities in the substrate, e. g., pinning sites, impurities, obstacles, channels. The ran-

dom field we introduce here is analogous to the random field in equilibrium spin systems

discussed in Sec. 1.7.1. We write the coarse-grained equations of motion (EOMs) for hydro-

dynamic variables – density and polarisation. We numerically solve these coupled nonlinear

equations for different strengths of disorder. Starting from a random isotropic state, we ob-

1 The work reported here is based on the paper “Ordering dynamics of self-propelled particles in an inhomoge-
neous medium”, Rakesh Das, Shradha Mishra and Sanjay Puri, Europhysics Letters 121, 37002 (2018).
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serve coarsening of the density and the polarisation fields. Our primary focus in this chapter

is the scaling behaviour and growth laws which characterise the emergence of the asymptotic

NESS from the disordered state.

Before proceeding, we should stress that there does not as yet exist a clear understanding

of the nature of the NESS in the case with substrate inhomogeneity. This problem definitely

requires further study. Nevertheless, it is both useful and relevant to study the coarsening

kinetics even without a clear knowledge of the asymptotic state [73]. As a matter of fact,

a proper understanding of coarsening kinetics in the inhomogeneous system might also

provide valuable information about the corresponding NESS.

This chapter is organised as follows. In Sec. 3.2 we define the model used in this study.

Details of the numerical techniques used and choices of the system parameters are given

in Sec. 3.3. In Sec. 3.3.1 we shall see that, in the clean SPPs, the polarisation field grows

algebraically with exponent 0.5, while the density grows with an exponent close to 0.8. The

presence of inhomogeneities slows down the growth rate of the hydrodynamic fields in

a complicated manner, as discussed in Sec. 3.3.2. For intermediate times, domains of the

polarisation field follow a power-law growth with a disorder-dependent exponent. At late

times the polarisation field shows a crossover to logarithmic growth, and the logarithmic

growth exponent does not depend on the disorder. For large disorder strength the local

polarisation remains pinned in the direction of the quenched random field. However, for

the density field, we could not find corresponding unambiguous growth laws. We end this

chapter with brief summary and concluding remarks in Sec. 3.4.

3.2 model

We consider a collection of polar SPPs of length l, moving on a two-dimensional (2D) sub-

strate of friction coefficient γ. Each particle is driven by an internal force F acting along the

long axis of the particle. The ratio of the force F to the friction coefficient gives a constant

self-propulsion speed vs = F/γ to each particle. On time-scales large compared to the inter-

action time, and length scales much larger than the particle size, the dynamics of the system

is governed by two hydrodynamic fields – density (which is conserved), and polarisation
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vector (which is a broken-symmetry variable in the ordered state). The ordered state is also a

moving state with mean velocity vs p. The dynamics of the system is characterised by the cou-

pled EOMs for the density and the polarisation vector. The coarse-grained density equation

is

∂ρ

∂t
= −vs∇ · (pρ) + Dρ∇2ρ. (3.1)

The corresponding polarisation equation is

∂p
∂t

= [α1(ρ)− α2 p2]p− vs

2ρ
∇ρ + λ1(p · ∇)p + λ2∇(p2) + λ3 p(∇ · p) + K∇2 p + h. (3.2)

The hydrodynamic Eqs. (3.1) and (3.2) are similar in spirit of the Eqs. (1.7) and (1.11). Next

we discuss the details of different terms in the above two equations.

In Eq. (3.1), Dρ represents diffusivity in the density field. Since the number of particles is

conserved, we can express the right-hand-side (RHS) of Eq. (3.1) as −∇ · J, where the current

J consists of terms Jd ∝ ∇ρ and an active current Ja ∝ vs pρ. The active current arises because

of the self-propelled nature of the particles.

The α-terms on the RHS of Eq. (3.2) represent mean-field alignment in the system. We

choose α1(ρ) = ρ
ρc
− 1 and α2 = 1 (for discussion, see Sec. 1.4.3). Then the clean system

(h = 0) shows a mean field transition from an isotropic disordered state with p = 0 for

mean density ρ0 < ρc to a homogeneous ordered state with p =
√

α1(ρ0)
α2

for ρ0 > ρc. The ∇ρ

term in Eq. (3.2) represents pressure in the system appearing because of density fluctuations.

Here, p plays a dual role in the SPP system. First, it acts like a polarisation vector order

parameter of same symmetry as a 2D XY model. Second, vs p is the flock velocity with

which the density field is convected. Therefore, we choose the same vs for the active current

term in the density equation and the pressure term in the polarisation equation, because

origin of both is the presence of non-zero self-propelled speed. As soon as we turn off vs,

the active current turns zero, and the density shows usual diffusive behaviour. Then we can

ignore density fluctuations as well as the pressure term. However, in general they can be

treated as two independent parameters as discussed in Sec. 1.4.3. λ terms are the convective
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nonlinearities, present because of the absence of the Galilean invariance in the system. K

represents diffusivity in the polarisation equation.

To introduce inhomogeneity, i. e., disorder in the system, we add a random-field term

Fh = −h · p into the ‘free energy’. This contributes the term − δFh
δp = h in the polarisation

equation. We should stress that such a term coupling to the polarisation field would not

arise in the free energy of an equilibrium fluid, but may be realised in the context of the

XY model where the polarisation vector is a spin variable. The random field is modeled as

h(r) = ∆ (cos ψ(r), sin ψ(r)) where ∆ represents the disorder strength, and ψ(r) is a uniform

random angle ∈ [0, 2π]. We call the model defined by the hydrodynamic Eqs. (3.1) and

(3.2) as a ‘random-field active model’ (RFAM). This terminology originates from the well-

known random-field Ising model (RFIM) discussed in Sec. 1.7.1, which has received great

attention in the literature on disordered systems [85, 100]. We are presently studying the

phase diagram of the RFAM. However, a clear determination of this is complicated by the

presence of long-lived metastable states. Apart from the RFAM, it is also natural to consider

a random-bond active model (RBAM), where the average orientation in the microscopic

Vicsek model is weighted with ‘random-bonds’ for different neighbours. In this chapter, we

will focus on the RFAM.

For zero self-propelled speed, i. e., vs = 0, Eq. (3.1) decouples from the polarisation field

and contains only the diffusion current. Hereafter, we refer to this as a ‘zero-SPP model’

(zero-SPPM). In the zero-SPPM, although it contains convective non-linearities, but coupling

to density is only diffusive type. For ∆ = 0, Eqs. (3.1) and (3.2) reduce to the continuum

equations introduced by Toner and Tu [29], which represent the clean system. While writing

Eqs. (3.1)-(3.2), all lengths are rescaled by the interaction radius in the underlying micro-

scopic model, and time by the microscopic interaction time. In doing that all the coefficients

(speed vs, diffusivities Dρ, K, non-linear coupling λ’s and field h) are in dimensionless units.

Thus, Eqs. (3.1)-(3.2) are in dimensionless units.

We should stress that the most general forms of Eqs. (3.1)-(3.2) also contain noise or

“thermal fluctuations”, as have been considered in Eqs. (1.7)-(1.11). For domain growth

in non-active systems [72, 73], coarsening kinetics is dominated by a zero-noise (or zero-

temperature) fixed point. This is because noise only affects the interfaces between domains,
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which become irrelevant compared to the divergent domain size [77]. In the present problem,

we again have divergent (though different) domain scales for the density and polarisation

fields, as we will see shortly. Therefore, it is reasonable to first study the zero-noise versions

in Eqs. (3.1)-(3.2), as we do in the present chapter. However, it is also important to undertake

a study of the noisy model and confirm the irrelevance of noise.

3.3 numerical study

We numerically solve Eqs. (3.1) and (3.2) for the hydrodynamic variables. The substrate

size is L× L (L = 256, 512, 1024, 2048) with periodic boundary conditions in both directions.

An isotropic version of Euler’s discretization scheme is used to approximate the partial

derivatives appearing in the hydrodynamic EOMs. In our numerical implementation, the

first and second order derivatives for an arbitrary function f (r, t) are discretized as

∂ f
∂t

=
f (t + ∆t)− f (t)

∆t
,

∂ f
∂x

=
f (x + ∆x)− f (x− ∆x)

2∆x
,

∂2 f
∂x2 =

f (x + ∆x)− 2 f (x) + f (x− ∆x)
(∆x)2 , (3.3)

where ∆t and ∆x are mesh sizes. While solving the equations, the field is specified on each

grid point. Thus, we have a field of strength ∆ and random orientation (which is quenched

in time) at each grid point. The random angle is chosen from a uniform distribution in

the range [0, 2π]. Our numerical scheme is convergent and stable for the chosen grid sizes

∆x = 1.0 and ∆t = 0.1.

We treat the parameters as phenomenological, and choose −λ1 = λ2 = λ3 = 0.5, Dρ = 1,

K = 1 and vs = 0.5. The above values of λ’s are chosen for simplicity. We checked that the

homogeneous ordered steady-state in the clean system is stable [39] for the above choice of

the parameters, and that can become unstable for large λ’s. We start with a homogeneous

isotropic disordered state with mean density ρ0 = 0.75 and random polarisation, and observe

ordering dynamics for different strengths of the random-field ∆ ∈ [0, 1]. We assume the mean

field critical density ρc = 0.5 for the clean system.
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Figure 3.1: Heat map of (left panel) the orientation θ(r, t) = tan−1
(

py(r,t)
px(r,t)

)
, and (right panel) the

density, shown for the clean system (∆ = 0). Starting with random orientation and uniform
density at t = 0, the system coarsens with time. Respective times are indicated on the left
margin.
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3.3.1 Coarsening in clean system

We first study coarsening in the clean system, i. e., for ∆ = 0. In Fig. 3.1, we show snapshots

of the orientation (left panel) θ(r, t) = tan−1
(

py(r,t)
px(r,t)

)
, and the density (right panel) fields at

different times. Starting from an initial isotropic state, high density domains with ordered

orientation emerge in the system, and the size of these domains increases with time. In

the studies of domain growth in far-from equilibrium systems [72, 73], the standard tool to

characterise the evolution of morphologies is the equal-time correlation function C(r, t) of

the order-parameter field. We use the same tool for the two fields p(r, t) and ρ(r, t), which

are relevant in the present context. We introduce the two-point correlation functions:

Cp(r, t) = 〈p(r0, t) · p(r0 + r, t)〉r0 , (3.4)

and

Cρ(r, t) = 〈δρ(r0, t)δρ(r0 + r, t)〉r0 . (3.5)

Here δρ represents fluctuation in the density from its instantaneous local mean value. Angu-

lar brackets denote spherical averaging (assuming isotropy), plus an average over space (r0)

and over 10 independent runs.

In Figs. 3.2(a) and 3.3(a), we show the correlation functions Cp and Cρ, respectively, at

different times for ∆ = 0. The data shows coarsening for both the fields, since the correlations

increase with time. Characteristic lengths Lp(t, ∆) and Lρ(t, ∆) are defined as the distance

over which the corresponding correlation functions fall to 0.5. In Figs. 3.2(b) and 3.3(b), we

plot the correlation functions Cp and Cρ, respectively, as a function of scaled distance r/Lp

and r/Lρ. We find nice scaling collapse for the polarisation, however, not for the density.

Similar results are found for other disorder strengths. The absence of dynamical scaling for

the density correlation is consistent with the absence of the single energy scale associated

with the density growth dynamics [72].

In Fig. 3.4(a), we show the time dependence of these length scales Lζ(t, 0) where ζ ≡ (p, ρ).

We calculate the growth of the polarisation field for two cases – (i) RFAM with self-propelled
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Figure 3.2: (a) Two-point correlation function versus distance plot for the polarisation field in the
clean system (∆ = 0) at different times. (b) Two-point correlation function versus scaled
distance plot. Cp shows good collapse.

speed vs = 0.5 and (ii) zero-SPPM with vs = 0.0. For the clean system, we find that the

characteristic length follows the similar growth law Lp(t, 0) ∼ t0.5 for both the RFAM and

the zero-SPPM. The density shows usual diffusive growth for the zero-SPPM. Although

the data does not show clean power-law for the density, Fig. 3.4(a) shows the growth of

the characteristic length as Lρ(t, 0) ∼ t0.8 for the RFAM in the clean system. Faster growth

of the density field in our study is consistent with the previous study of self-propelled

particles [46]. We define the algebraic growth law of the hydrodynamic fields in the clean

system as Lζ(t, 0) ∼ t1/zeff(ζ) , where zeff(ζ) is the effective growth exponent. In Fig. 3.4(b), we

show the variation of the effective growth exponent zeff(ζ) with time on log-linear scale for

the two fields in the RFAM. We find zeff(p) ∼ 2 for almost two-decades, and zeff(ρ) ∼ 1.2,
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Figure 3.3: (a) Two-point correlation function versus distance plot for the density field in the clean
system (∆ = 0) at different times. (b) Two-point correlation function versus scaled distance
plot. Cρ does not show good scaling; therefore, dynamic scaling is absent for the density
field.

when averaged over intermediate and late times, although it shows large oscillations. These

oscillations are not due to poor averaging, but rather an intrinsic feature of the density

growth in the active systems. These may arise due to the absence of a single energy scale for

the density growth.

3.3.2 Coarsening in inhomogeneous system

Now we study the effect of disorder in the RFAM. In the studies of domain growth, it has

been found that random-field and random-bond disorder slows down the coarsening [91,
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Figure 3.4: (a) Growth law of the hydrodynamic variables in the clean (∆ = 0) system. The self-
propelled speed vs = 0.5 for the random field active model (RFAM), whereas vs = 0
for the zero-SPP model (zero-SPPM). The straight lines are drawn for the respectively
indicated power-laws. (b) Plot of effective growth exponent of the hydrodynamic fields
versus time in the clean system for the RFAM.

101, 116–119]. This is attributed to the trapping of domain boundaries by sites of quenched

disorder [101, 116, 117]. As most of the experimental systems contain disorder, here we in-

vestigate the effect of random-field disorder on coarsening in the SPPs. In Fig. 3.5, we show

snapshots of the orientation (left panel) and the density (right panel) at time t = 1000 for

different strength of disorder. We find that domain size decreases with increasing ∆. The

effect of inhomogeneity in the system is also inferred from the polarisation two-point cor-

relation function shown in Fig. 3.6(a). Consequently, the characteristic lengths Lp,ρ decrease

with ∆ as shown in Figs. 3.7(a, b). In Fig. 3.6(b), we plot the two point correlation function

Cp vs. scaled distance r/Lp for fixed time and different strengths of disorder ∆ = 0.0, 0.1, 0.2

and 0.6. We find good scaling collapse of the correlation functions. This suggests that the
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Figure 3.5: Heat map of (left panel) the orientation θ(r, t) = tan−1
(

py(r,t)
px(r,t)

)
, and (right panel) the

density, shown for fixed time t = 1000 and different disorder strengths ∆ indicated on the
left margin. Size of the ordered domains reduces with increasing strength of disorder.
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Figure 3.6: (a) Two-point correlation function for the polarisation, drawn for different disorder
strengths at t = 1000. (b) shows scaling collapse of Cp as a function of r/Lp. Morphol-
ogy of the polarisation field is approximately independent of disorder.

morphology of the polarisation field is approximately unaffected by disorder. However, this

‘super-universality’ [120] does not extend to the density field which does not even show

simple dynamical scaling.

As stated before for the clean system, zeff(p) shows a mean value z̄p(∆ = 0) ∼ 2 for an

extended range of time. In the RFAM, there is a preasymptotic regime with an effective ex-

ponent z̄p(∆). As shown in Fig. 3.8(a), z̄p increases with ∆. Also the preasymptotic regime

decreases with increasing ∆, and disappears for ∆ > 0.4. Beyond the mean growth expo-

nent regime, zeff(p)(t, ∆) increases sharply with time, that signifies pinning of the interfaces

because of large disorder strength [91, 92].
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Figure 3.7: Growth law of the field variables - (a) the polarisation and (b) the density in the RFAM,
drawn for different disorder strengths. In the disordered environments, the growth devi-
ates from the power-law at late times.

For the density field, we find zeff(ρ)(t, 0) ∼ 1.2 (not clean power-law). As we increase

disorder strength, the effective growth exponent increases, but it does not show a clean

power-law and fluctuates very much (data not shown). Hereafter, we characterise the growth

law in the presence of disorder for the polarisation field only.

In the presence of disorder, we find a deviation from the power-law growth of the polari-

sation field. To analyse the effect of disorder, we use the method introduced by Corberi et al.

[91, 92]. They propose the following scaling form for the growth law:

L(t, ∆) ∼ t1/zeff = t1/z f (∆/tφ). (3.6)

64



Here zeff(t, ∆) represents the effective growth exponent, and φ is the crossover exponent. The

scaling function f (x) behaves as

f (x) ∼


const., for x → 0,

x1/(zφ) `
(
x−1/φ

)
, for x → ∞,

(3.7)

where x = ∆/tφ. For φ < 0, scaling form in Eq. (3.6) shows a crossover from the power-

law L ∼ t1/z to an asymptotic behaviour L ∼ `(t∆1/|φ|). We evaluate the effective growth

exponent for the polarisation field using the relation t = Lzg(L/λ) where the crossover

length scale λ = ∆1/φz, and g(y) = [ f (x)]−z with y = L/λ. Then the effective growth

exponent is represented as a function of y as

zeff(y) =
∂ ln t
∂ ln L

= z +
∂ ln g(y)

∂ ln y
. (3.8)

In Fig. 3.8(a), we show the time dependence of zeff(p)(t, ∆) for ∆ = 0.05, 0.1, 0.2 and 0.4. For

the clean system, we find that zeff(P) is close to 2, as shown in Fig. 3.4(b). For non-zero ∆, the

plots show zeff(p) ' z̄p for sufficient range of time. z̄p is a disorder-dependent constant. This

is followed by late time regime where zeff(p) is time-dependent. This scenario seems to be a

common feature of domain growth in disordered systems as shown in Ref. [92]. Hence we

can write Eqs. (3.6), (3.7) and (3.8) by replacing z→ z̄.

Now we study the dependence of zeff on L. From Eq. (3.8), we can say that zeff − z̄ only

depends on y = L/λ. In Fig. 3.8(b), we plot zeff(p) − z̄p vs. Lp/λp for various disorder values.

We choose different λp values for different ∆ to ensure the data collapse. The corresponding

values of λp and z̄p for different ∆ are listed in table 3.1. The solid curve in Fig. 3.8(b) is the

best-fit to the power-law form

zeff − z̄ = byϕ (3.9)

with b = 0.193 and ϕ = 8.86. In Fig. 3.8(c), we show the ∆ dependence of λp, which is

fitted by λp ∼ ∆−0.72. The negative exponent implies that the disorder is indeed a relevant
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Figure 3.8: (a) Time variation of the effective growth exponent of the polarisation field in the RFAM,
shown for different disorder strengths. (b) The scaling collapse of zeff(P)− z̄p versus Lp/λp.
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Table 3.1: Parameters z̄p and λp in the RFAM with different ∆ values.

∆ 0 0.05 0.10 0.20 0.40

z̄p 2.0 2.06 2.60 3.40 6.50

λp ∞ 20.0 14.50 8.70 4.50

scaling field. From Eq. (3.9) it is easy to confirm the logarithmic domain growth. The scaling

function g(y) can be evaluated by

∂ ln g(y)
∂ ln y

= byϕ ⇒ g(y) ∼ exp
(

b
ϕ

yϕ

)
. (3.10)

Substituting for g(y) in Eq. (3.8) gives the asymptotic logarithmic growth form:

L
λ
'
[ ϕ

b
ln
(
t/λz̄)]1/ϕ

. (3.11)

The exponent ϕ has important physical significance in domain-growth studies as it measures

how the trapping barriers scale with domain size. We find ϕ = 8.86 in our RFAM.

3.4 discussion

In summary, we have studied ordering dynamics in a collection of polar self-propelled par-

ticles in an inhomogeneous medium. We use a coarse-grained model where inhomogeneity

is introduced as an external disorder field, which is quenched in time and random in space.

The strength of disorder is tuned from ∆ = 0 to 1.0 and kept fixed during the evolution of

the system.

When the system is quenched from a random isotropic state, both the density and the

polarisation fields coarsen with time. In the clean system, i. e., for ∆ = 0, the polarisation

field follows the power-law growth Lp(t) ∼ t0.5, while the density field approximately grows

as Lρ(t) ∼ t0.8. We find that the polarisation shows dynamical scaling, whereas the density

does not. This indicates that the approach towards the ordered state for the density field is

no longer controlled by a single energy scale associated with the cost of a domain wall.
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The presence of disorder slows down the growth rate of the hydrodynamic fields. For inter-

mediate time, domains of the polarisation field follow a power-law growth Lp(t, ∆) ∼ t1/z̄p(∆)

with a disorder-dependent exponent z̄p(∆). At late times, the polarisation field shows a

crossover to logarithmic growth Lp(t, ∆) ∼ (ln t)1/ϕ, where the exponent ϕ does not depend

on disorder. We find the logarithmic exponent is ϕ = 8.86 for our two-dimensional RFAM.

For large ∆, the local polarisation remains pinned in the direction of the quenched random

field. However, we could not find clean growth law for the density field. The scaling function

for Cp(r, t) is approximately independent of disorder, showing that the morphology of the

polarisation field is relatively unaffected by disorder.

In our present study, we find that the disorder plays an important role in the phase or-

dering dynamics and scaling in a collection of SPPs. Our study provides novel insights on

ordering dynamics in a collection of active polar particles in clean as well as disordered envi-

ronments. The disorder we introduce in our model is analogous to random fields introduced

in usual spin systems. It would be interesting to study the effects of other kinds of disorder

on ordering dynamics in the active systems.
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4
P O L A R F L O C K I N T H E P R E S E N C E O F R A N D O M Q U E N C H E D

R O TAT O R S

4.1 introduction

Steady-state properties of the polar SPPs in inhomogeneous medium have been recently ad-

dressed by many theoretical and experimental groups [95–99], as we have already discussed

in Sec. 1.7.2. While commenting about these studies, Reichhardt and Reichhardt [102] stress

upon the understanding of the flocking phenomena in the presence of different kinds of in-

homogeneities. In a similar spirit, we study the effect of rotator-type obstacles on the nature

of ordering in the polar SPPs. Moreover, we propose a minimal model for the polar SPPs

in inhomogeneous medium that can easily be compared with its well-studied equilibrium

counterparts [85, 86].

In this chapter1, we introduce a Vicsek-like model [31] for the polar SPPs in the presence

of obstacles in the medium. The obstacles are modeled as random quenched rotators which

rotate the orientation of neighbouring SPPs by an angle determined by intrinsic orientations

of the rotators. The model can be visualised as in a large moving crowd, some random ‘road-

signs’ have been placed. Individual ‘road-sign’ dictates the neighbouring people to take a

roundabout by a certain angle from their direction of motion. The specific issue we address

here is the correlation of this collective motion in the presence of these random ‘road-signs’.

In the limit of zero self-propulsion speed, our model reduces to the XY-model [20] with

random quenched obstacles. In the XY-model, any finite amount of quenched randomness

1 The work reported in this chapter is based on the pre-print “Polar flock in the presence of random quenched
rotators”, Rakesh Das, Manoranjan Kumar and Shradha Mishra, arXiv:1802.08861v2 [cond-mat.stat-mech].
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is enough to destroy the orientationally ordered state in dimension d ≤ 4 [85, 86]. Therefore

in two dimensions (2D), an equilibrium system with quenched obstacles does not have any

ordered state. Analogous to this, we show that in 2D polar self-propelled system, quenched

rotators destroy the long range order (LRO) that usually found in the clean system.

We have organised this chapter as follows. The microscopic model mentioned above is

defined in Sec. 4.2. Technique for simulating the model and choices of the model parameters

are given in Sec. 4.3. Our numerical results show that small density of quenched rotators

leads the the system to a quasi-long range order (QLRO) state. In this QLRO state, the

absolute value of average normalised velocity V decreases algebraically with the system

size. Also, fluctuation in the orientations of the SPPs increases logarithmically with system

size. We present these results in Sec. 4.3.1. This QLRO state survives upto a critical density

crc of the rotators, below which V and fluctuation in orientations of the SPPs show nice

scaling collapse with scaled system size, as described in Sec. 4.3.2. In Sec. 4.3.3 we show that

increase in the density of the rotators beyond crc introduces a continuous transition from the

QLRO to a disorder state. We construct a phase diagram in noise vs. density of rotators plane

indicating the QLRO and the disorder state regimes. The hydrodynamic equations of motion

(EOMs) for the above model is introduced in Sec. 4.4. A linearised study of these equations

suggests an extra 1/q2 divergence in the equal-time spatially Fourier transformed correlation

functions of the hydrodynamic fields in the q → 0 limit. We argue that such divergence

destroys the usual LRO of the clean SPPs and leads the system to the QLRO state. We close

this chapter in Sec. 4.5 with a brief summary of results, a comparative discussion with the

microscopic model introduced by Chepizhko et al. [95], and illuminating experimental scope

of our model.

4.2 model

We consider a collection of Ns polar SPPs distributed over a 2D square substrate. Each parti-

cle moves with a fixed speed vs along its orientation φ. Individual SPP tries to reorient itself

along the mean orientation of all the neighbouring SPPs (including itself) within an interac-

tion radius Rs, though ambience noise leads to orientational perturbation. Moreover, there
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are Nr immobile rotators randomly distributed on the substrate. Each rotator possesses an

intrinsic orientation ϕ, which can take any random value in the range [−π, π] and remains

fixed. Therefore, the rotators are quenched in time, and we call these as random quenched

rotators (RQRs). Each RQR rotates the orientations of the SPPs within an interaction radius

Rr by an angle determined by ϕ and SPP-RQR interaction strength µ. The update rules

governing position ri and orientation φi of the ith SPP are as follows:

ri (t + 1) = ri (t) + vi (t) , (4.1)

φi (t + 1) = 〈φj (t)〉j∈Rs + µ〈ϕj〉j∈Rr + ∆ψ, (4.2)

where vi (t) = vs (cos φi (t) , sin φi (t)) is the velocity of the particle i at time t, 〈φ〉Rs and

〈ϕ〉Rr represent the mean orientation of all the SPPs and the RQRs, respectively, within

the interaction radii. Fluctuation in orientation of the SPPs because of ambience noise is

represented by an additive noise term ∆ψ distributed within η [−π, π], where noise strength

η ∈ [0, 1]. We call this model as ‘active model with quenched rotators’ (AMQR), which

reduces to the celebrated Vicsek model (VM) [31] for µ = 0 or in the clean system, i. e., for

Nr = 0.

4.3 numerical study

We numerically simulate the collection of Ns SPPs spread over a L× L (L ∈ [50, 300]) 2D sub-

strate with periodic boundary condition. Initially the particles are chosen to have random

velocity, but with constant speed vs. The density of the SPPs is defined as cs = Ns/L2. Simi-

larly, the density of the RQRs is given by cr = Nr/L2. We distribute these rotators uniformly

on the substrate, and randomly assign intrinsic orientation ϕ ∈ [−π, π]. The position and

the velocity of all the SPPs in the collection are updated simultaneously following Eqs. (4.1)-

(4.2). At every time step we use OpenMP Application Program Interface for parallel updation

procedure of all the SPPs.

We consider cs = 1.0, vs = 1.0, µ = 1.0, and for simplicity we take Rs = Rr = 1. In

the absence of the rotators [31], the system shows disorder to order transition with decreas-
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ing noise strength η. The ordering in the system is measured in terms of the conventional

absolute value of the average normalised velocity [31]

V = 〈 1
Nsvs
|

Ns

∑
i=1

vi|〉 (4.3)

of the entire system. Here 〈·〉 indicates an average over many realisations and time in steady-

state. V varies from zero to unity for disorder to order state transition. For the reported data,

we start the averaging of observables after 3× 105 updates to assure reaching the steady-

state, and averaging is done for next 5 × 105 updates. Upto 30 realisations are used For

better averaging.

4.3.1 Quasi-long range order

For a fixed η we calculate V for different cr and study its variation with system size. As

shown for η = 0.1 in Fig. 4.1(a), V does not change with system size in the clean system;

consequently, the system possesses a non-zero V in the thermodynamic limit. Therefore, the

clean system remains in the LRO state, which agrees with earlier prediction by Toner and

Tu [29]. However, in the presence of the RQRs, V decreases algebraically with Ns following

a relation

V = A(cr)N−ν(cr)
s , (4.4)

as shown in Fig. 4.1(a)-(b). Both A and ν are functions of the rotator density for a fixed noise

strength. Therefore, in the thermodynamic limit, V of the system with RQRs reduces to zero.

We stress that the system remains in a QLRO state for small cr, beyond which the AMQR

shows a continuous QLRO-disorder state transition, as we will see shortly. In Fig. 4.2 we

show snapshots of the orientation and the local density of the SPPs for η = 0.1 and different

cr. For cr = 0 all the particles are in highly ordered state. RQRs perturb the LRO flocking as

shown for cr = 0.005, 0.01. For high density cr = 0.02, the SPPs remain highly disordered.

We further study the fluctuation in the orientation of the SPPs. Width of a normalised

distribution P(φ) of orientation of the SPPs provides a measure of this fluctuation. It is
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Figure 4.1: V versus 1/Ns plots in the (a) ordered and (b) disordered state for η = 0.10. The error bars
indicate standard error in mean. The solid lines show the respective algebraic fits.

calculated by averaging over the distributions at every time step in the steady-state, and also

over many realisations. We set the mean orientation of all the distributions at φ = 0 for

averaging.

We note that P(φ) widens with the increasing density of RQRs. This is quite intuitive

since the degree of disorder increases with cr. We fit these distributions with Voigt profile,

which is defined as the convolution of the Gaussian and the Lorentzian functions [121]. A

brief discussion of Voigt profile and the procedure used to fit P(φ) with it are provided in

Appendix 4.A. From the respective fits, we calculate the full width at half maximum (FWHM)

f of the distributions.

We note that, in the clean system, P(φ) does not change with system size. However, for any

fixed cr > 0, P(φ) widens with increasing system size, as shown in Fig. 4.3(a) for (η, cr) =
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Figure 4.2: Steady-state snapshots are shown for η = 0.10, L = 150. (a - d) are drawn for cr =
0, 0.005, 0.01 and 0.02, respectively. The colour bar indicates orientation of the SPPs. The
rotators with random intrinsic orientation are not shown for the sake of clarity of the
figures.

(0.10, 0.005). In Fig. 4.3(b), we show the variation of f with system size for different cr. f

does not change with Ns for cr = 0. Therefore, in the clean system, the fluctuation in the

orientation of the SPPs does not depend on the system size, and the system is in the LRO

state. However, for cr > 0, FWHM of P(φ) follows the relation f = g1(cr) + g2(cr) ln(Ns),

where both g1 and g2 are functions of cr. Since g2 ≥ 0, f increases logarithmically with Ns,

which further confirms the QLRO in the AMQR.

We should stress that, in the clean system, P(φ) is always independent of the system size;

no matter the system is in the homogeneous ordered state or in the banded state. It is evident
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Figure 4.3: (a) Distribution P(φ) of the orientation of the SPPs is shown for η = 0.10 and cr = 0.005.
The curves are zoomed into the range φ ∈ [−π/2, π/2] for better visibility. The solid lines
show the respective fits with Voigt profile. (b) Plot of the FWHM f of P(φ) versus Ns. In
the presence of quenched rotators, f increases logarithmically with Ns. The dashed lines
show respective fits.

from Fig. 4.4(a) where we plot P(φ) for the banded state (η = 0.40). However, in the presence

of the random quenched rotators, P(φ) widens with system size, as shown in Fig. 4.4(b).

4.3.2 Scaling

We plot V versus scaled system size Ns/Nγ(cr)
s for η = 0.1 and different cr in Fig. 4.5(a).

Here γ(cr) ' 1− kcr, where k is a positive constant. Moreover, ν = z(1− γ), where z is a

non-monotonic function of η. We note nice scaling collapse for cr ≤ 0.0125. This predicts

that, for cr ≤ 0.0125, the system can be divided into sub-systems of size Nγ(cr)
s within which

75



-π -π / 2 0 π / 2 π
φ

0.001

0.009

0.017

P(
φ)

  = 100
  = 300

-π -π / 2 0 π / 2 π
φ

0.004

0.008

0.012

P(
φ)

  = 100
  = 300

L

(a)

L

(b)

Figure 4.4: Plot of orientation distribution P(φ) of the SPPs for η = 0.40. In the clean system, i. e., for
cr = 0, the system remains in the banded state. As shown in (a), P(φ) does not change
with system size in this state. However, as shown in (b) for cr = 0.008, fluctuation in V
increases with system size. Respective fits with Voigt profile has not been shown for the
sake of clarity of the plots.

the SPPs remain ordered. Since γ = 1 for cr = 0, V does not depend on the system size,

and therefore the clean system remains in the LRO state. However, in the presence of the

RQRs, the system remains in the QLRO state. This scaling also predicts self-similarity of the

system for different cr ≤ 0.0125. As shown in Fig. 4.5(b), we also find nice scaling collapse of

f − g1(cr) with scaled system size Ns/NΓ(cr)
s for different cr ≤ 0.0125, where Γ = 1− g2(cr)

that varies linearly with cr for small cr. Similar scaling holds for other η values in the QLRO

state.
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Figure 4.5: (a) Plot of V versus scaled system size Ns/Nγ
s on log-log scale, where γ is a function of

cr. The data shows good scaling for 0 < cr ≤ 0.0125, but deviates for cr ≥ 0.0125. (b)
Plot of shifted FWHM f − g1(cr) with scaled system size Ns/NΓ

s , where both g1 and Γ are
functions of cr. The scaling holds good for cr ≤ 0.0125.

4.3.3 Transition from quasi-long range order to disorder state

The variation of V with cr is shown in Fig. 4.6(a) for η = 0.1 and different system sizes. Start-

ing from the value of V close to 1 for small cr, V decreases to smaller values with increasing

cr. Therefore, with increasing cr, QLRO-disorder transition takes place in the system. We

further calculate the variance χ of V for different system sizes, and plot these as a function

of cr in Fig. 4.6(b). Data shows a peak in χ as a function of cr where fluctuation is large. The

position of the peak shifts from cr = 0.016 to 0.0125 as we increase the system size from

L = 100 to 300. The critical density crc(L) of the QLRO-disorder state transition for the sys-

tem size L is obtained from the position of the peak in χ versus cr plot. We plot V as function
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Figure 4.6: (a) Variation of V with cr shown for different system sizes and η = 0.10. (b) Variance χ
of V plotted with cr. The peaks in the curves indicate the critical density of rotators crc(L)
for the QLRO-disorder transition for the respective system sizes. (c) V shows good scaling
with reduced density of rotators c(L) = (crc(L) − cr)/crc(L) for cr ≤ crc for all system
sizes. The dashed line shows the scaling V ∼ c0.287.
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Figure 4.7: Phase diagram in noise strength versus density of rotator plane. For small cr, the QLRO
state prevails, beyond which the system continuously goes to the disorder state.

of reduced density of rotators c(L) = (crc(L) − cr)/crc(L) in Fig. 4.6(c), and note that the

data for all system sizes merge onto each other. We find a good scaling as V ∼ cδ, where

δ ≈ 0.287. Similar scaling is noted for other η values also, where δ varies between 0.28 and

0.35. In analogy of the exponent β in the usual equilibrium models [20], we anticipate δ close

to 1/3. This suggests a continuous QLRO-disorder state transition in the AMQR. We note

that for all η values, crc(L) flattens on increasing L. Therefore, using the extrapolated values

crc(L → ∞), we construct a phase diagram in the noise strength versus density of rotator

plane. We stress that in the presence of RQRs, the system remains in the QLRO below the

phase boundary shown in Fig. 4.7.

4.4 linearised hydrodynamics

We introduce the hydrodynamic EOMs of the relevant field variables for the AMQR in this

section. Since the AMQR reduces to the VM in the absence of the RQRs, we adopt the

hydrodynamic EOMs introduced by Toner and Tu [29, 49] for the coarse-grained density

ρ(r, t) of SPPs and the velocity field v(r, t). The velocity field v(r, t) is a broken symmetry

parameter analogous to the polarisation field p(r, t) introduced in Sec. 1.4.3, and they are
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related by v(r, t) = v0 p(r, t), where v0 is the average speed of the flock. We introduce the

effect of the quenched randomness in the Toner-Tu model by a field ζ(r, t) with correlations

〈ζi(r, t)ζ j(r′, t′)〉 = ζ2δijδ(r− r′), (4.5)

where dummy indices i and j represent Cartesian components. Therefore, the hydrodynamic

EOMs of the polar SPPs with quenched randomness take forms as follows:

∂tρ + ∇ · (vρ) = Dρ∇2ρ, (4.6)

∂tv + λ1(v · ∇)v + λ2(∇ · v)v + λ3∇(v2)

= (α1 − α2v2)v−∇P + DB∇(∇ · v) + DT∇2v

+ D2(v · ∇)2v +
ρo

ρ
ζ + f , (4.7)

where ρo represents density of obstacles. As compared to the polarisation Eq. (1.11), here

we have discarded equal elastic constant approximation, and therefore all possible types of

diffusion terms are written in Eq. (4.7). The ∇P term on the RHS of Eq. (4.7) represents

the pressure, similar to the ∇ρ term in Eq. (1.11). f represents the annealed noise term that

provides a random driving force. We assume this to be a white Gaussian noise with the

correlation

〈 fi(r, t) f j(r′, t′)〉 = ∆δijδ(r− r′)δ(t− t′) (4.8)

where ∆ is a constant. For ζ = 0, the set of Eqs. (4.6)-(4.8) represents the Toner-Tu [29] model.

Now we check whether a broken symmetry state of the SPPs in the presence of the obstacle

field survives to small fluctuation in the hydrodynamic fields. In the hydrodynamic limit, a

linearised study of Eqs. (4.6)-(4.7) alongwith the correlations in Eqs. (4.5) and (4.8) gives

spatially Fourier transformed equal-time correlation functions for the density

Cρρ(q, t) =
1
q2

{
ζ2ρ2

oaρ(θ)

b(θ)q2 + d(θ)
+ ∆Aρ(θ)

}
, (4.9)
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and the velocity

Cvv(q, t) =
1
q2

{
ζ2ρ2

oav(θ)

b(θ)q2 + d(θ)
+ ∆Av(θ)

}
. (4.10)

The parameters aρ,v, Aρ,v, b and d depend on the specific microscopic model and on the

angle θ between the wave vector q and the flocking direction. The detailed calculation for

Eqs. (4.9)-(4.10) is given in Appendix 4.B. For ζ = 0, our result matches with the earlier

prediction by Toner and Tu [29], where the two structure factors diverges as 1/q2 for small q.

However, for ζ 6= 0, we find that the structure factors have strong direction dependence and

possess another divergence ofO(1/q2) for small q. Appearance of such additional fluctuation

break the usual LRO present in the clean system and leads the system to QLRO state in the

presence of quenched inhomogeneities. Therefore, our linearised hydrodynamic calculation

agrees with the numerical predictions for the AMQR. However, a dynamic renormalisation

group [122] calculation would be helpful to understand the effect of nonlinearities.

4.5 discussion

In summary, we have studied the effect of random quenched rotators on the flocking state

of the polar SPPs. These rotators are one kind of obstacles that rotate the orientation of

the SPPs. We find that, for small density of the rotators, the usual LRO of the clean polar

SPPs is destroyed, and a QLRO state prevails. With further increase in the density of the

rotators, a continuous QLRO to disorder state transition takes place in the system. Our

linearised hydrodynamical analysis predicts appearance of an extra 1/q2 divergence in the

presence of quenched inhomogeneities that destroys the usual LRO of the polar SPPs in 2D.

In equilibrium systems with random quenched obstacles, ordered state does not exist below

four dimensions [85, 86]. However, as compared to the equilibrium systems, in our model for

the polar SPPs with quenched rotators, we find QLRO in 2D. Our prediction of the QLRO

in the polar SPPs in the presence of quenched obstacles agrees with recent observations [95,

123, 124].
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A P P E N D I X

4.a voigt profile

Voigt profile is defined as

V(φ; σ, ε) =
∫ π

−π

exp
(
−Φ2/2σ2)
σ
√

2π

ε

π [(φ−Φ)2 + ε2]
dΦ, (4.11)

where the Gaussian and the Lorentzian contributions are signified by the parameters σ and

ε, respectively. The FWHM of the Voigt profile is approximately given by the relation [121]

f ≈ 0.5346 fL +
√

0.2166 f 2
L + f 2

G, (4.12)

where fL = 2ε represents the FWHM of the Lorentzian distribution, and fG = 2σ
√

2 ln 2

represents FWHM of the Gaussian distribution.

As mentioned in Sec. 4.3.1, we realise that the distribution P(φ) follows Voigt profile.

So we take discrete Fourier transform (DFT) of P(φ) and fit the transformed distribution

with the characteristic function ξ (n; σ, ε) = exp
(

σ2n2

2 − ε|n|
)

of V(φ; σ, ε). Here n represents

the Fourier conjugate of φ. From the fits in the Fourier space, we extract the values of the

parameters σ and ε, and calculate the FWHM of P(φ) using Eq. (4.12). The fits shown in

Fig. 4.3(a) are obtained by the inverse DFT of the fitted functions ξ (n; σ, ε).

4.b linearised theory of the broken symmetry state in the presence of

quenched inhomogeneities

Given the EOMs of the hydrodynamic fields in Sec. 4.4, we check whether a broken sym-

metry state of the SPPs in the presence of the obstacle field survives to small fluctuations
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in the hydrodynamic fields. We consider a broken symmetry state v = v0ŷ + δv, where the

spontaneous average value of the velocity 〈v〉 = v0ŷ and v0 =
√

α1/α2. Fluctuation in the

density field is given by δρ = ρ− ρ̄, where ρ̄ represents the mean density of SPPs. We ex-

pand spatial and temporal gradients appearing in the EOMs, and retain upto lowest-order

terms in derivatives, since we are interested in long-time and long-distance behaviour of the

system. Doing so, we obtain the EOM for the fluctuation δvy as

∂tδvy + 2α1δvy = −σ1∂yδρ +
ρo

ρ̄
ζy + irrelevant terms. (4.13)

Since we are interested in hydrodynamic modes, i. e., modes for which frequency ω → 0 as

wave number q→ 0, we can neglect time-variation of δvy as compared to its value. Therefore,

from Eq. (4.13), we obtain the relation

δvy =
1

2α1

(
−σ1∂yδρ +

ρo

ρ̄
ζy

)
. (4.14)

Using the expression for δvy from Eq. (4.14), we obtain the EOMs for δρ and δvx as

(
∂t + v0∂y − Dρy∂2

y − Dρ∂2
x

)
δρ + ρ̄∂xδvx = − ρo

2α1
∂yζy, (4.15)

σ1∂xδρ +
(

∂t + γ∂y − DL∂2
x − Dy∂2

y

)
δvx =

ρo

ρ̄
ζx + fx, (4.16)

where Dρy = Dρ + ρ̄σ1/2α1, DL = DB +DT, Dy = DT +D2v2
0 and γ = λ1v0. These parameters

depend on the scalar quantities v2 and ρ(r) whose fluctuations are small in the broken

symmetry state. So, hereafter we consider these parameters as constants.

It is now instructive to Fourier transform the set of Eqs. (4.15)-(4.16) in space and time.

Given a function u(r, t), its Fourier transform in space and time is defined as

u(q, ω) =
∫ ∞

−∞
dtdreiωte−iq·ru(r, t). (4.17)
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Using the above definition, we write the equations of motion for the fluctuations in the

Fourier space as follow

[
i
(
ω− v0qy

)
− Γρ(q)

]
δρ− iρ̄qxδvx = −i

ρo

2α1
qyζy, (4.18)

iσ1qxδρ +
[
−i
(
ω− γqy

)
+ ΓL(q)

]
δvx =

ρo

ρ̄
ζx + fx, (4.19)

where wave number dependent dampings are

Γρ(q) = Dρq2
x + Dρyq2

y, (4.20)

ΓL(q) = DLq2
x + Dyq2

y. (4.21)

The normal modes of the pair of coupled Eqs. (4.18)-(4.19) are two propagating sound waves

with complex eigenfrequencies

ω± = c±(θ)q− iΓL

[
v±(θ)
2c2(θ)

]
− iΓρ

[
v∓(θ)
2c2(θ)

]
, (4.22)

where θ is the angle between q and the direction of flock, i. e., ŷ-direction, and

c±(θ) =
γ + v0

2
cos θ ± c2(θ), (4.23)

v±(θ) = c2(θ)±
γ− v0

2
cos θ, (4.24)

c2(θ) =

√
1
4
(γ− v0)2 cos2 θ + σ1ρ̄ sin2 θ. (4.25)

Solving the linear set of Eqs. (4.18)-(4.19) for δρ(q, ω) and δvx(q, ω), we obtain

 δρ(q, ω)

δvx(q, ω)

 =

 Gρρ(q, ω) GρL(q, ω)

GLρ(q, ω) GLL(q, ω)


 iρoζyqy/2α

fx + ρoζx/ρ̄

 (4.26)
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where the propagators are

Gρρ(q, ω) =
−i (ω− γq cos θ) + ΓL(q)

[ω− c+(θ)q] [ω− c−(θ)q] + iω
[
Γρ(q) + ΓL(q)

]
− iq cos θ

[
γΓρ(q) + v0ΓL(q)

] ,

(4.27)

GρL(q, ω) =
iρ̄q sin θ

[ω− c+(θ)q] [ω− c−(θ)q] + iω
[
Γρ(q) + ΓL(q)

]
− iq cos θ

[
γΓρ(q) + v0ΓL(q)

] ,

(4.28)

GLρ(q, ω) =
−iσ1q sin θ

[ω− c+(θ)q] [ω− c−(θ)q] + iω
[
Γρ(q) + ΓL(q)

]
− iq cos θ

[
γΓρ(q) + v0ΓL(q)

] ,

(4.29)

GLL(q, ω) =
i (ω− v0q cos θ)− Γρ(q)

[ω− c+(θ)q] [ω− c−(θ)q] + iω
[
Γρ(q) + ΓL(q)

]
− iq cos θ

[
γΓρ(q) + v0ΓL(q)

] .

(4.30)

Using the expression given in Eqs. (4.26)-(4.30) and the correlations given in Eqs. (4.5) and

(4.8), we calculate correlation functions for the density and the velocity fields. Retaining upto

lowest-order terms in q, we obtain density-density correlation function

Cρρ(q, ω) =
(ω− γq cos θ)2

[
− ρ2

o
4α2

1
ζ2q2 cos2 θδ(ω)

]
+ ρ̄2q2 sin2 θ

[
∆ + ρ2

o
ρ̄2 ζ2δ(ω)

]
[ω− c+(θ)q]

2 [ω− c−(θ)q]
2 +

{
ω
[
Γρ(q) + ΓL(q)

]
− qy

[
γΓρ(q) + v0ΓL(q)

]}2 ,

(4.31)

and velocity-velocity correlation function

Cvv(q, ω) =
−σ2

1 ζ2q4 sin2 2θ
ρ2

o
16α2

1
δ(ω) + (ω− v0q cos θ)2

[
∆ + ρ2

o
ρ̄2 ζ2δ(ω)

]
[ω− c+(θ)q]

2 [ω− c−(θ)q]
2 +

{
ω
[
Γρ(q) + ΓL(q)

]
− qy

[
γΓρ(q) + v0ΓL(q)

]}2 .

(4.32)

Given these Fourier transformed correlation functions, we proceed further to obtain the spa-

tially Fourier transformed equal-time correlation functions for the density and the velocity
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fields. Neglecting the higher order fluctuations, we obtain the expressions for Cρρ,vv(q, t) as

given in Eqs. (4.9)-(4.10), where

b(θ) = cos2 θ{γ
(

Dρ sin2 θ + Dρy cos2 θ
)
+ v0

(
DL sin2 θ + Dy cos2 θ

)
}2,

d(θ) = γv0 cos2 θ − σ1ρ̄ sin2 θ,

p±(θ) = 2c2{c±[(DL + Dρ) sin2 θ + (Dy + Dρy) cos2 θ]−

cos θ[(v0DL + γDρ) sin2 θ + (v0Dy + γDρy) cos2 θ]},

s±(θ) = (c± − v0 cos θ)2/2π,

s(θ) = ρ̄2 sin2 θ/2π,

aρ(θ) = sin2 θ/2π,

Aρ(θ) = s(θ)
[

1
p+(θ)

+
1

p−(θ)

]
,

av(θ) = v2
0 cos2 θ/2πρ̄2,

Av(θ) =

[
s+(θ)
p+(θ)

+
s−(θ)
p−(θ)

]
.
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5
P O L A R F L O C K I N T H E P R E S E N C E O F N O N - Q U E N C H E D

I N H O M O G E N E I T Y

5.1 introduction

We have shown in the last chapter that any amount of quenched randomness destroys the

long range order (LRO) usually seen in the polar self-propelled particles (SPPs) in two di-

mensions (2D) [123, 124]. Here we introduce a Vicsek-like microscopic model for the polar

SPPs in the presence of non-quenched inhomogeneity and adopt a dynamics so that both the

SPPs and the inhomogeneity agents affect orientation of each other. We note that this model

leads the system into a LRO state which is robust than that in the clean SPPs.

This chapter is organised as follows. In Sec. 5.2 we define the model, discuss about its

different limits, and motivate the practical relevance of the model. The numerical details

are provided in Sec. 5.3. In Sec. 5.3.1 we present results for the clean limit of our model

which is simply the Vicsek model. We note the existence of quasi-long range order (QLRO)

for the quenched inhomogeneity limit of our model, as presented in Sec. 5.3.2. The effect of

non-quenched inhomogeneities is presented in Sec. 5.3.3. We note that for the non-quenched

dynamics, the system attains a LRO state, and that LRO state survives upto noise strength

greater than the critical noise strength for the order-disorder transition in the clean SPPs.

This chapter is closed with concluding remarks in Sec. 5.4.
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5.2 model

We consider a Vicsek-like model [31] for a collection of polar SPPs distributed over a 2D

square substrate with periodic boundary condition. Each particle moves with a fixed speed

vs along their orientation θ ∈ [−π, π]. The particles interact with their neighbours ‘ferro-

magnetically’ within a circle of radius Rs = 1; i. e., all the neigbouring particles within the

interaction range try to mutually align their orientation θ. However, the ambience noise per-

turbs mutual alignment of the SPPs. To introduce inhomogeneity in the system, we consider

some immobile agents randomly distributed on the substrate. These inhomogeneity agents

possess some intrinsic orientation φ, which may change depending on their interaction with

the SPPs. These agents primarily act like obstacles, and try to align the orientation of the

neighbouring SPPs (within a circle of radius Ro = 1.0) along their intrinsic orientations. Also

the neighbouring SPPs affect the intrinsic orientation of the interacting obstacles. Therefore,

the model follows the update rules

rj(t + 1) = rj(t) + vj(t), (5.1)

θj(t + 1) = arg

[
∑

k∈Rs

eiθk(t) + µ ∑
k∈Rs

eiφk(t)

]
+ ∆ψ, (5.2)

φj(t + 1) = arg

[
eiφj(t) + α ∑

k∈Ro

eiθk(t)

]
. (5.3)

Here rj(t) and vj(t) = vs(cos θj(t), sin θj(t)) respectively represent the position and the veloc-

ity of the jth SPP at time t. The first term under summation on the right-hand-side (RHS) of

Eq. (5.2) takes care of the SPP-SPP interaction, while the second term represents SPP-obstacle

interaction tuned by a parameter µ. The ambience noise is represented by ∆ψ which can take

any value randomly in the range η[−π, π] for noise strength η ∈ [0, 1]. We assume ∆ψ an

additive Gaussian white noise with delta correlation and zero mean. On the RHS of Eq. (5.3),

the first term expresses inertia of the obstacle to retain its earlier orientation, while the sec-

ond term takes care of the effect of SPP-obstacle interactions on the obstacle. In this equation,

we consider another SPP-obstacle interaction strength α which is different from µ since the

total linear momentum may not be conserved in this dry active system (see Sec. 1.2.2). This α
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term makes the obstacles non-quenched, and for α = 0 the model represents dynamics with

quenched obstacles. We do not consider any explicit noise term to affect the φ update. The

model defined by Eqs. (5.1)-(5.3) reduces to the celebrated Vicsek model (VM) [31] for the

clean system.

The model described above is significantly different from the rotator-model described by

Eqs. (4.1)-(4.2) in Chatpter 4. There the obstacles are modeled as quenched rotators that add

random angle over the mean orientation of all the SPPs within an interaction range. On

the contrary, the effect of SPP-SPP and SPP-obstacle interactions are added ‘vectorially’ in

the present model, and the direction of the ‘resultant vector’ gives the updated orientation

in absence of the ambience noise. Therefore, in this model the obstacles are like ‘magnetic

impurities’ and have different interaction strength as compared to the SPP-SPP interaction.

The condition α 6= 0 makes these obstacles or inhomogeneities non-quenched.

Let us consider a physical example to understand the relevance of the present model.

Suppose there is a large mass gathering in a big hall, and we want to evacuate that place in a

panic situation. We place some barriers randomly in the hall that can rotate about their body

axes. The initial orientation of one barrier will affect a chunk of people close to it. In turn,

the barrier will also reorient itself because of the pressure (push) exerted by those people. In

the following sections, we show that the above model provides us an efficient way of ‘crowd

controlling’.

5.3 numerical study

We consider a collection of Ns polar SPPs spread over a L× L square substrate with periodic

boundary condition. Density of the SPPs is defined as cs = Ns/L2. Similarly the density of

the obstacles (inhomogeneity) is co = No/L2 where the substrate has No obstacles uniformly

distributed on the substrate. We consider vs = 1.0, Rs = Ro = 1 for simplicity. Initially the

orientation θ of the SPPs are chosen randomly in the range [−π, π]. Also, the obstacle orien-

tations φ ∈ [−π, π] are chosen randomly at the beginning. The position and the orientation

of the SPPs, and the orientation of the obstacles are updated following the update rules given

by Eqs. (5.1)-(5.3). We thermalise the system for 3× 105 iterations to achieve steady-state, and

90



calculate the required macroscopic variables by averaging over next 5× 105 iterations. We

also use many realisations for better averaging. During each iteration, all the microscopic

variables of the SPPs and the obstacles are updated simultaneously using OpenMP Applica-

tion Programme Interface. The ordering of the SPPs is characterised by the scalar value of

the average normalised velocity V = 〈 1
Nsvs
|∑Ns

j=1 vj|〉.

5.3.1 Clean system

We first study the clean system, i. e., the VM in the steady-state. The system shows monotonous

order-disorder transition with noise strength as shown in Fig. 5.1 for co = 0. The system re-

mains highly clustered and highly ordered for low η values. The ordering decreases and the

system gets more homogeneous with increasing η. For moderately high η, bands appear in

the system and ordering decreases further. The system gets completely disordered for fur-

ther increment in noise. The real space snapshot of the clean system for different η values

are shown in the top panel of Fig. 5.2. Note that in the clean system, the parameters µ and α

have no relevance.

5.3.2 SPPs with quenched inhomogeneity

The effect of quenched obstacles (i. e., α = 0) on the SPPs are discussed in this section. As

shown in Figs. 5.1(a)-(b), the system with quenched inhomogeneities attains the maximum

order at a finite noise strength. This phenomenon of optimal ordering is clear from the snap-

shots shown in the second panel from the top of Fig. 5.2, and has already been discussed in

Sec. 4.5. We note that for the above mentioned values of the microscopic parameters, the op-

timal η is very small for small µ. Therefore, we choose a moderate value µ = 200 for further

studies. We note that V decreases algebraically with Ns following Eq. (4.4) in the presence

of quenched inhomogeneities, as shown in Fig. 5.3(a). Moreover, the orientation distribution

P(θ) (see Sec. 4.3.1 for definition) broadens with system size, as shown in Fig. 5.4(a). These

results provide further confirmation for the presence of QLRO in the presence of quenched

inhomogeneities in 2D collection of SPPs.
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Figure 5.1: Order-disorder transition with noise strength shown for L = 200. The clean system shows
monotonous transition. The same curve has been drawn in (a) and (b) for the clean system.
In the presence of obstacles, (a) and (b) are drawn for co = 0.004 and 0.040, respectively. If
the obstacles are quenched in nature (α = 0), optimal ordering is attained at finite η > 0.
For non-quenched obstacles (α = 1), the system shows monotonous transition. Also, for
non-quenched obstacles the transition takes place at higher η as compared to the clean
system.

5.3.3 SPPs with non-quenched inhomogeneity

Now we set α > 0; therefore, the inhomogeneities become non-quenched. We note that any

value of α > 0 ultimately leads the system to the same steady-state, and α only changes

the time required to attain the steady-state. Although it will be interesting to look for the

evolution rates depending on α, it is beyond the scope of the current work. In this chapter,

we consider α = 1 and study the corresponding steady-states only.

We note that because of the mutual alignment interaction between the SPPs and the obsta-

cles, the obstacles get aligned with the SPPs for favourable η. Once the obstacles get aligned,
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−1 −0.5 0 0.5 1

Φ / π

Figure 5.2: Real space snapshot. The colour bar indicates orientation Φ ≡ θ (respectively φ) of the
SPPs (obstacles). The obstacles are represented by ⊗ symbols, and the colour of × in ⊗
indicates φ. From left to right, the panels correspond to η = 0.01, 0.20 and 0.40 respectively.
(Top panel) is drawn for the clean system (co = 0). The ordering decreases monotonously
with η for the clean system. Band appears in the right most panel. (Second panel from the
top) is drawn for co = 0.006 with quenched obstacles, i. e., α = 0. In this case the system is
disordered at low noise, gets ordered at moderate noise, and again gets disordered at high
noise (band is destroyed at η = 0.40). (Bottom panel) is drawn for co = 0.006 with non-
quenched obstacles (α = 1). In this case, the system shows monotonous order-disorder
transition like the clean system. Again band appears for η = 0.40. All obstacles are not
shown for the sake of the clarity of the figures.
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Figure 5.3: V versus 1/Ns plot on log-log scale for η = 0.10. (a) In the presence of quenched obstacles,
i. e., for α = 0, V decreases algebraically with Ns. The solid lines show respective fits. (b)
For α = 1 and co > 1, V shows almost no change with Ns. The solid lines show algebraic
fits with exponent ν < 10−3.

they make the neighbouring SPPs more aligned; therefore, the obstacles turn into aligners,

and thereby we call these inhomogeneity agents ‘obstacle-turned-aligners’ (OTAs). In the

presence of these OTAs, the system shows monotonous order-disorder transition with η, as

shown in Fig. 5.1. Therefore, the presence of OTAs suppress the phenomenon of optimal

ordering at finite noise which has earlier been seen in the presence of quenched inhomo-

geneities. Similar to the clean system, the system with OTAs show clustered and highly

ordered state at low noise. For moderate noise, the system is homogeneous and moderately

ordered. For further increase in noise, bands appear in the system, and the system become
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Figure 5.4: Steady-state orientation distribution of the SPPs shown for η = 0.10 and co = 0.004. (a)
Width of P(θ) increases with system size in the presence of quenched obstacles. (b) For
non-quenched obstacles P(θ) does not depend on system size. θ axis has been zoomed
into the range [−π/2, π/2] for better visibility.
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Figure 5.5: (a) and (b) show Binder cumulant for co = 0 and 0.04, respectively. (b) is shown for α = 1.
The transition noise ηc is given by the deepest UL for the corresponding system size L.

disordered beyond a critical noise ηc. These phenomena are clear from the snapshots shown

in the bottom panel of Fig. 5.2.

Next we study the variation of V with system size for different η and co in the ordered

steady-state. As shown in Fig. 5.3(b) for η = 0.10, V does not change with system size.

We also note that P(θ) is independent of the system size in the presence of the OTAs, as

shown in Fig. 5.4(b). Therefore, the modification of the quenched inhomogeneities through

the dynamics described by Eq. (5.3) again establishes the LRO in the polar SPPs.

In the presence of OTAs, the SPPs become more robust to the ambience noise as com-

pared to the clean SPPs. Fig. 5.1(b) shows that the critical noise ηc associated with the order-

96



0.002 0.006 0.01
1 / L

0.47

0.49

0.51

η c
  = 0.000
  = 0.004
  = 0.008
  = 0.020
  = 0.040

0 0.01 0.02 0.03 0.04
c

o

0.48

0.5

0.52

η c∞

(a)

(b)

c
o

Figure 5.6: (a) shows finite size scaling of ηc for different co. The dashed lines are the respective
quadratic fits. Intercept on ηc-axis gives thermodynamic value of the critical noise strength
(ηc∞). (b) In the presence of the OTAs, ηc∞ increases monotonously with co.

disorder transition increases in the presence of OTAs. To study this phenomenon in detail,

we calculate ηc for different co and L using Binder cumulant defined as

UL = 1−
〈V4

inst〉
3〈V2

inst〉2
, (5.4)

where Vinst represents instantaneous absolute value of the average normalised velocity, and

〈·〉 represents averaging over simulation time and many realisations. Plots of UL vs. η are

shown for different system sizes for co = 0 and 0.04 in Figs. 5.5(a) and (b), respectively. We

assume that the minimum value of UL indicates the respective ηc. In Fig. 5.6(a), we show the
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variation in ηc with the system size for different co. These data show quadratic fit with 1/L.

Interpolating those fits, we obtain the values of the critical noise in the thermodynamic limit

ηc∞ = ηc(L → ∞). As shown in Fig. 5.6(b), ηc∞ increases monotonously with co. Since the

mean separation between neighbouring OTAs decreases with increasing co, the OTAs offer

more stability to the bands of SPPs. Therefore, the ordered state of the SPPs become more

robust to noise for high density of the OTAs .

5.4 discussion

In summary, we have studied the effect of non-quenched inhomogeneities on the polar SPPs

in 2D. The dynamics of the system is such that both the SPPs and the inhomogeneity agents

feedback orientation of each other. We show that this dynamics again establishes the long

range order in the SPPs which is destroyed in the presence of the quenched randomness.

Moreover, these non-quenched inhomogeneities make the ordering in the polar SPPs robust

than the clean system. We anticipate that this understanding can be used to control crowd,

or in other polar self-propelled systems where we need better ordering and robustness.

We have not discussed the hydrodynamics of the numerical model introduced above, since

we are yet to draw some conclusion from that. We have calculated auto-correlation of the

non-quenched inhomogeneities, which suggests that these non-quenched inhomogeneities

cannot be considered as pure annealed randomness. We realise that a complicated interplay

of the ambience noise, the density of the inhomogeneity and the parameter α controls the

eigenfrequencies of the corresponding sound modes. These inhomogeneities may act like

pure quenched or annealed obstacles depending on the values of the microscopic parameters,

which we shall discuss somewhere else.
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6
C O N C L U S I O N

In this chapter, we provide a brief summary and concluding remarks on all the problems

discussed so far. We have introduced a lattice model for the active nematic in two dimen-

sions (2D) consisting of apolar SPPs. The dynamics of the apolar SPPs is anisotropic since

it moves towards the axis, horizontal or vertical, with which it makes the least angle. This

active model reduces to its equilibrium counterpart if the anisotropic dynamics is ceased

and the particles are allowed to diffuse towards any axes. We have incorporated volume

exclusion interaction in both the models, active or equilibrium. Furthermore, the particles in-

teract nematically with their neighbours. We note that the equilibrium model shows a simple

isotropic disorder to nematic state transition with the change in temperature or particle den-

sity. On the contrary, the phase diagram of the active model in temperature-density plane

is a complicated and interesting one. We see that the system remains disordered at high

temperature and low density regime. With the increase in density, some highly ordered do-

mains with high local density emerges in the background of a low local density disordered

regime. Hence, the active system is said to be in an inhomogeneous mixed state. The system

shows bistability between a homogeneous globally ordered state and the inhomogeneous

mixed state at high density regime. This bistability appears because of the volume exclusion

interaction in the model, since at the complete filling limit there is no space to move for the

active particles. Therefore, the active model reduces to the equilibrium model. We also see

that at low temperature regime, the transition from the disorder state to the inhomogeneous

mixed state takes place through band formation. This observation has further been justified

by our linearised study of the corresponding hydrodynamics. It will be interesting to employ

99



this model of active and equilibrium nematic in three spatial dimensions for a comparative

study. In the current model the particle have the same chances to move either of the two

sides of a selected axis. Adaptation of an asymmetric simple exclusion process [128] may

invoke further interesting properties in the active model.

The phase ordering kinetics of the hydrodynamic fields of the 2D polar SPPs are discussed

in Chapter 3. We note that in the clean system, the polarisation field grows algebraically

with time and shows dynamical scaling. However, we do not find any clean growth law

for the density field, and it follows an approximate power-law growth. The density field

does not show dynamical scaling; therefore, the dynamics of this field is not dominated by

a single energy scale. We introduce quenched inhomogeneity in the system by a random

field, and thereby we call it a random field active model analogous to the celebrated ran-

dom field Ising model. The growth dynamics slows down for both the fields in presence

of the quenched inhomogeneity. We note that though initially the polarisation field follows

a disorder-dependent algebraic growth law, at late times the growth is logarithmic and the

corresponding exponent does not depend on the strength of inhomogeneity. An analogous

study of the phase ordering kinetics in the polar SPPs in the presence of random bonds

would be interesting.

The next problem we addressed is the steady-state behaviour of the 2D polar SPPs in pres-

ence of quenched inhomogeneities. We introduce a Vicsek-like model for the polar SPPs, and

the inhomogeneities are modeled as quenched rotators, similar to the vortices appearing in

rivers. Our numerical study show that a small density of the rotators is sufficient to destroy

the usual long-range order of the polar SPPs in clean environment. The system goes contin-

uously to the disorder state with increasing density of the rotators. We also do a linearised

study of the corresponding hydrodynamic equations of motion. Our calculation shows that

the structure factors of the hydrodynamic fields contain an extra 1/q2 divergence in the small

wave-number limit in the presence of quenched inhomogeneities, and this divergence pos-

sesses strong directional anisotropy. We argue that this extra divergence destroys the usual

long range order of the clean SPPs. There may be question regarding the importance of the

non-linearities in the equations, however, recently Toner et al. categorically answer this query

in their preprints [123, 124]. Note that in the equilibrium limit, our model is analogous to the
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XY model. It is now well known that in presence of quenched inhomogeneity, there cannot

be any long range order below four dimensions. Similar to this, we claim that quenched

inhomogeneity destroy the long range order in the polar SPPs in 2D.

The destruction of the long-range order in the 2D polar SPPs in presence of the quenched

inhomogeneities motivates us to search for the tuning mechanism that can again establish

the long range order in presence of some inhomogeneity. To do so, we introduce a Vicsek-like

model for inhomogeneous system where the orientation of the SPPs and the inhomogeneities

depend on each other. We show that such a dynamics not only establishes the long range

order in the system, but that new long range order state is robust as compared to the clean

SPPs. In this thesis we have only presented the order-disorder transition in the model, how-

ever this model possess interesting growth dynamics which we shall discuss somewhere

else.
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